
UNIVERSITY OF HERTFORDSHIRE
Faculty of Engineering and Information Sciences

7COM0177 Computer Science MSc Project (Online)

Final Report
January 2014

Improved Open Source Backup:
Incorporating inline deduplication and sparse indexing

solutions

G. P. E. Keeling

Abstract

This paper investigates whether incorporating inline deduplication techniques can
improve open source backup offerings, and whether 'sparse indexing' is an effective
solution to the disk deduplication bottleneck.

Problems with an existing open source cross-platform network backup solution were
identified, along with how it compares to other open source backup solutions, and a
literature search and review of relevant algorithms and techniques was performed.

A new backup engine was designed and implemented, using Agile methodology and
ideas garnered from the research.

A test procedure was produced and executed, and the results empirically show that
the new software is either superior or comparable to its 'competition' in terms of
speed, storage space, storage nodes, and network utilisation.

These improvements came at the cost of increased memory utilisation, which was
then partially mitigated by implementing 'sparse indexing'.

There are some suggestions for further improvement and extra work to be done
before an initial release.

The paper ends with some conclusions and an evaluation of the project as a whole.

Acknowledgements

I would like to thank all the users of the original 'burp', all around the world.

Contents Page

Abstract

Acknowledgements

1 Introduction 2

2 Software development methodology 8

3 Proof of concept programs 10

4 The first iteration 11

5 Comparative testing 12

6 Initial test results 16

7 The second iteration 37

8 Final test results 38

9 Further iterations 53

10 Conclusion 55

11 Evaluation of the project as a whole 57

Bibliography

Appendix A - How the original 'burp' works

Appendix B - Design of the proof of concept programs

Appendix C - Rabin fingerprinting algorithm in C

Appendix D - Design of the first iteration

Appendix E - Design of the second iteration

Appendix F - Open source competition

Appendix G - Raw test data

Appendix H - Items to be completed before releasing the new software

1

1. Introduction

This chapter begins by defining the problem domain. It goes on to formulate the research
questions within the problem domain, and then finishes by outlining the aims and objectives
of the project.

The paper then proceeds systematically through the following chapters, describing the
methodology utilised, the design and development of the new software, a test plan and
results, a second round of development and testing, and finally the conclusions and
evaluation.

1.1. The problem domain

A typical scenario is a small to medium sized business (though the solution should not rule
out enterprise users) where an administrator needs to back up from and restore to a mix of
heterogenous machines. They want to back up to cheap disk based storage, rather than using
expensive tape machines. They may want to back up to a remote location over a slow link.

I am the designer and author of an open source cross-platform network backup program. It is
called 'burp' (Keeling, 2011), and aims to provide a solution to this problem. The experience
of developing and supporting this software enables me to produce a list of what I consider to
be the most important features necessary for such a solution:

Backs up Unix/Linux and Windows computers.•
Backs up and restore files, directories, symlinks, hardlinks, fifos, nodes, permissions,
timestamps, xattrs, acls and other meta data.

•

Can do 'image' backups and restores.•
Can restore individual files.•
Space used on the server should be kept to a minimum.•
Time taken to back up should be kept to a minimum.•
Time taken to restore is less important, but should be reasonable.•
Network usage should be kept to a minimum.•
Network communications must be secure.•
Scheduling of backup times.•
Success and failure notifications via email can be configured.•
Multiple retention periods can be configured.•
An interrupted backup can be resumed.•

2

The original burp supports most of this already. But there are flaws, or weaknesses.
'Appendix A - How the original burp works' describes how the original burp works in more
detail. For the purposes of this introduction, the important points are that:
a) It has a client/server design, where the backups are stored on the central server.
b) It uses librsync (Pool, 2004) in order to save network traffic and on the amount of space
that is used by each backup.
c) It can do deduplication 'after the fact', once all the data has been transferred, and then only
at the granularity of whole files.

1.2. How the rsync algorithm works

This is a very brief summary of how the rsync algorithm works. For the full details, please
see the original paper (Tridgell et al, 1996).

The rsync algorithm provides a mechanism for updating a file on one machine (the original
file) to be identical to a file on another machine (the new file). The original file is split into
fixed sized chunks. A pair of checksums is generated for each chunk. One, the 'weak'
checksum, is very fast to calculate. The other, the 'strong' checksum takes longer to calculate,
but two chunks of different content are highly unlikely to generate the same value. These
checksums are sent to the other machine. The other machine now generates a 'delta' to be
applied to the original file in order to make it match the new file. It does this by reading the
new file byte-by-byte, generating the weak checksum as it goes. If it finds a chunk whose
weak checksum matches one of the signatures that it received, it also generates a strong
checksum for that chunk. If that also matches, the original file is thought to contain an
indentical chunk.
By this means, a delta is generated that contains all the data not in the original file, and
details on how to apply them in order to reconstruct the new file.

This algorithm was made, by the authors of the paper, into an open source program named
rsync. It became very popular and has evolved over time. Its main purpose is to efficiently
produce mirrors of the contents of file systems.
It is also used as the back end of various backup systems, such as rsnapshot (Rosenquist et al,
2003).

3

1.3. librsync

The librsync library was intended to provide a simple way for other programs to include the
rsync algorithm. It is important to note that the original rsync project does not use librsync.

However, various backup programs, such as burp and rdiff-backup (Escoto et al, 2001), do
use it.

Since the start of the original burp project, I have noticed that backing up large files can take
a very long time when librsync is involved. So, I decided that this could be a good avenue of
investigation with which to start this computer science project.

1.4. The problems with librsync

The original rsync continues to be maintained at the time of writing, whereas librsync has not
been updated since 2004.
This means that improvements to rsync have not made it into librsync.

My initial investigation into the large file librsync problem involved timing the application of
deltas to files, using both rsync and librsync, and comparing the results.

I was surprised when I discovered that librsync is actually faster than rsync for reasonably
large files of a few gigabytes. On further investigation, I found that this was because librsync
uses MD4 (Rivest, 1990) for its strong checksums, whereas rsync "now uses MD5
checksums instead of MD4" (rsync-3.0.0-NEWS, 2008). MD5 (Rivest, 1992) is stronger
cryptographically, at the cost of a little speed.

Upon searching, I did not find a documented reason for rsync to have made this change. But
this does show that the original rsync is continuing to evolve whilst librsync is not.

Increasing the size of the test files enabled me to find the point where the librsync speed
slowed down dramatically, whilst the rsync speed did not.

I tracked the problem down to the relevant place in the librsync code. It turns out that, once a
weak checksum has been looked up in the in-memory hash table, there is an attached list of
strong checksums to search. This final search is done linearly.

4

After I made this discovery, I discovered that somebody else had found the same thing and
had come up with a patch for it.

"When files being rsynced are hundreds of Gbytes size collisions in hash

table kill librsync.

So linear collision resolution has been replaced with log n collision

resolution based on binary search.

Size of hash table is 65536 buckets. So when files size is

(block_size * 65536 * t) then linear collision resolution is t / (log t)

slower than binary search resolution. If block size is 2048 bytes then for

1TB speed up is 630 times. for 100GB - 80 times." (Denisov, 2012)

At this point, I tried the patch and ran the tests again and found that it did help.

However, I then recalled that a lot depended on the fixed block size that you gave librsync.
When writing the original burp, I assumed that the block size should vary depending on the
size of the file.
But now, investigating the original rsync, I found that this is not what rsync itself does. It
does a similar calculation, but then limits it to a maximum value.

So, by this point, I was being faced with reimplementing complicated logic from rsync into
burp and rewriting chunks of librsync. I was effectively considering writing my own version
of librsync within burp. And even if I did that, there would still be limitations due to hash
table size limits and the design of the original burp still would not allow inline deduplication
of data.

1.5. Variable length chunks

I continued with my academic research. I soon found information about variable length
content chunking, as opposed to librsync's fixed length blocks.
The blocks are stored on the server, and the file to be backed up on the client side is read
through and split into variable length chunks. This is the opposite way round to rsync
splitting the server file, not the client, into fixed chunks.

"In backup applications, single files are backup images that are made up

of large numbers of component files. These files are rarely entirely

identical even when they are successive backups of the same file system.

A single addition, deletion, or change of any component file can easily

shift the remaining image content. Even if no other file has changed, the

5

shift would cause each fixed sized segment to be different than it was

last time, containing some bytes from one neighbor and giving up some

bytes to its other neighbor. The approach of partitioning the data into

variable length segments based on content allows a segment to grow or

shrink as needed so the remaining segments can be identical to previously

stored segments.

Even for storing individual files, variable length segments have an

advantage. Many files are very similar to, but not identical to other

versions of the same file. Variable length segments can accommodate

these differences and maximize the number of identical segments."

(Zhu, B. et al, 2008)

This same paper talks about methods for improving the speed of hash table index look ups in
order to avoid disk bottlenecks when there is not enough RAM to hold it in memory.

1.6. Sparse indexing

This led me to another paper that proposes a different approach, named 'sparse indexing'.
Put simply, the client reads the variable length chunks from its files to back up and groups
them into 'segments'. Instead of sending the checksums of all the blocks to the server, it
chooses a few 'hook' checksums and sends those first instead.
The server has already stored data from previous backups, including 'manifests', which
consist of instructions on how to rebuild files from the blocks. These manifests also have
'hooks' chosen from them (these are the sparse indexes). The server will use the incoming
'hooks' to match against the sparse indexes in order to choose which manifest's blocks to
deduplicate against. So, only a few manifests are chosen at a time, since loading from disk is
costly. These manifests are called 'champions'.
Since not all the blocks are loaded into memory, the deduplication is not perfect. But, due to
locality of data, the results will still remain good, as the experimental results of the paper
show.

"To solve the chunk-lookup disk bottleneck problem, we rely on chunk

locality: the tendency for chunks in backup data streams to reoccur

together. That is, if the last time we encountered chunk A, it was

surrounded by chunks B, C, and D, then the next time we encounter A

(even in a different backup) it is likely that we will also encounter

B, C, or D nearby. This differs from traditional notions of locality

because occurrences of A may be separated by very long intervals

(e.g., terabytes). A derived property we take advantage of is that if

two pieces of backup streams share any chunks, they are likely to share

many chunks." (Lillibridge, M. et al, 2009)

6

1.7. Putting it all together

It occurred to me that the sparse indexing paper makes no mention of the kind of efficiency
savings that programs like bacula (Sibbald, 2000) or burp make when they are asked to back
up a file on which the modification time has not changed since the previous backup.
It also occurred to me that I have not yet heard of an open source backup program that brings
all of these techniques together, along with existing beneficial features (such as the usage of
the Windows backup API, notifications, scheduling and so on). Such a program would surely
be useful to many people around the world.
Some additional research was performed at this point to see if I was correct in this. I was
unable to find any such software already in existence.

1.8. The research questions

At this point, having given an outline of the concepts involved, I can state the research
questions:

Can incorporating inline deduplication techniques improve open source backup offerings
and produce an empirically superior product?

•

Is sparse indexing an effective solution to the disk deduplication bottleneck?•

1.9. Aims and objectives

I can also now state that the main aim of the project is to improve upon the existing 'burp'
software to produce the basis of a new open source cross platform network backup software
that is demonstrably superior to others in the same field.
To achieve this, I have produced a list of project objectives. They are divided into 'core' and
'advanced' categories, as was required for the Extended Project Proposal.

Core: Complete a search and review of popular existing open source network backup
solutions, explaining the areas in which current backup offerings are flawed.

•

Core: Complete a literature search and review of relevant algorithms and techniques that
will be needed to implement a new software engine.

•

Core: Design and develop the new software.•
Advanced: By conducting suitable tests and analysis, prove that the new software is
superior to other offerings.

•

Advanced: Demonstrate that sparse indexing is an effective solution to the disk
deduplication bottleneck.

•

Core: Complete the final project report.•

7

2. Software development methodology

I generally followed the Agile method of XP ('Extreme Programming'), having previously
found that it worked reasonably well in a previous computer science module.

Wells (2009) provides the following diagram, which gives a general outline of the XP
process.

The coding was done on a Debian Linux platform, in C, although C++ was considered. A
major factor influencing this decision was my more extensive experience with C, meaning
that I would be able to utilise the limited time more effectively, rather than dealing with
problems arising out of C++ inexperience. However, a considerable effort was made to make
sure that my C structures followed object oriented principles. Another factor in the decision
to use C was that most of the original burp code was written in C, albeit with the occassional
C++ module for interfacing with Windows APIs.

Most of the testing during development was done on the Debian Linux platform, with
occassional testing using a Windows client cross-compiled with a mingw-w64 toolchain.
This enabled quick progress whilst ensuring that nothing major was broken on the Windows
platform.

During the implementation of the second iteration in particular, once it was clear that
essential functionality would be complete before the project deadline, a fair chunk of time
was spent cleaning up existing burp code. Code redundancy was reduced and old code started
to be shifted towards a more object-oriented approach. The structure of the source tree was
altered significantly in order to logically separate server and client code. This was all done
for the purpose of reducing 'technical debt', which is very desirable from an Agile viewpoint.

8

2.1. Initial design decisions

I now needed to make some design decisions on exactly which algorithms to use, and the
changes that needed to be made to the design of burp to support these new proposals.
However, I did feel that it was important to design the software in such a way that I could
easily switch between different choices of algorithms at some point in the future. It is not
actually greatly important to the design and implementation of the software that I choose the
best algorithms from the start.

I chose MD5 for the strong checksum. This was because I was familiar with it (and MD4) via
experience with rsync, librsync, and the original burp. The original burp uses MD5 in order
to checksum whole files. It is a suitable, low risk choice for strong chunk checksums in the
new software. An MD5 checksum also fits into 128 bits, which saves on memory compared
to something like the SHA family (Eastlake, 2001) - which use a minimum of 160 bits - but
still provides good uniqueness. That is, two different chunks of data are vastly unlikely to
have matching MD5 checksums. For a match, the blocks also need to have matching weak
checksums, which further reduces the chances of collisions. At some future point,
experimentation with other algorithms may be performed though.

Lillibridge, M. et al, used their own Two-Threshold Two-Divisor chunking algorithm
(Eshghi, 2005), and assert that it "produces variable-sized chunks with smaller size variation
than other chunking algorithms, leading to superior deduplication".
However, I chose 'rabin fingerprinting' (Rabin, 1981) for this task. It gives a suitable weak
checksum and the implementation that I produced seems suitably fast, as will be seen in the
test results. Again, at some future point, experimentation with other algorithms may be
performed.

9

3. Proof of concept programs

In order to ensure a solidly functional rabin algorithm and disk storage format before
embarking on the complex asymetric network I/O that would be required for the first
iteration of the software, I designed and implemented some proof of concept programs. I
class this as 'release planning' in the XP process - my estimates were uncertain until I went
through a 'spike' and experimented with rabin and disk storage. This made estimates more
confident.

The idea for the prototype was to have programs that could use simple I/O so that data
streams could simply be piped between them, or written to or read from files.

3.1. Design

Due to lack of space in the main project report, the design documents that I wrote for the
proof of concept programs are reproduced in Appendix B.
The implementation of these programs was completed in the middle of June 2013.

3.2. Rabin fingerprinting

A reproduction of the C function containing the rabin algorithm that was produced for the
proof of concept programs can be found in Appendix C. I judge this as being the most
important outcome from that exercise, although it was modified slightly during later
iterations in order to support slightly different usage required in the final software where
asyncronous I/O had to be taken into account.

Note that the full code of the prototype can be found in the extra materials submitted with
this report.

10

4. The first iteration

The plan for the first iteration was to replace the core of the original burp with an inline
deduplicating engine that uses variable length chunks. In the prototype, I had already
produced the basic parts of this engine, so the problem became how to merge this into burp.

4.1. Design

Due to lack of space in the main report, the design documents that I wrote for the first
iteration are reproduced in Appendix D.
The implementation of the first iteration was completed on the 2nd of September 2013. I
experienced a lot of trouble getting the asymmetric I/O and stream multiplexing to work
correctly, but since the 2nd of September, it has been solid.

11

5. Comparative testing

Once the first iteration was basically working, I designed a procedure with which to test the
various backup solutions.

The testing was done using a Linux server and client, because this greatly simplifies setup
and the measurement of resource utilisation. The machines were connected to each other
using a 100Mb/s switch.

Server
CPU: Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz (double core)

RAM 4GB:

OS Linux version 3.2.0-3-amd64 (Debian 3.2.21-3)

Disk 1: ATA WDC WD400BB-00JH 05.0 PQ (40GB - for the OS)

Disk 2: ATA ST3400620A 3.AA PQ (400GB - for the storage)

Client
CPU: Intel(R) Atom(TM) CPU D510 @ 1.66GHz (quad core)

RAM: 4GB

OS: Linux version 3.2.0-4-amd64 (Debian 3.2.46-1+deb7u1)

Disk 1: ATA SAMSUNG HD501LJ CR10 PQ: 0 ANSI: 5 (500GB)

There were two test sequences for each backup software. In both cases, files were initially
copied into a directory on the client computer for the purposes of being backed up.
a) Many small files - I downloaded 59 different linux kernel source packages from
http://kernel.org/ and unpacked them.
This resulted in 1535717 files and directories, and 20GB (20001048kb) of data, which is an
average of about 13kb per file.
b) One large file - I used a 22GB VirtualBox VDI image file of a Windows 7 machine. I took
one copy of this, started and stopped the Windows 7 virtual machine then took another copy
of the file, which was now changed.

Each sequence had the following steps, each of which is targetting potential weaknesses of
backup software. For example, updating the timestamp of a large file could cause the whole
file to be copied across the network even though none of the data has changed.

12

Perform a backup.1.
Perform a backup without changing anything.2.
Perform a backup after changing some of the data.
For the small files, I randomly scrambled the files in one of the kernel directories.
For the large file, I used the rebooted VDI image.

3.

Perform a backup after updating the timestamp on some of the files.
For the small files, I updated all of the timestamps in one of the kernel directories
without changing the data.
For the large file, I updated its timestamp without changing its data.

4.

Perform a backup after renaming some of the files.
For the small files, I created a new directory and moved half of the kernel sources
into it.

5.

Perform a backup after deleting some of the files.
For the small files, I deleted half of them.
For the large file, I truncated it to 11GB.

6.

Restore all the files from each of the six backups.7.

These measurements were taken for each backup or restore:

The time taken.•
The cumulative disk space used after each backupe•
The cumulative number of file system nodes used by the backup.•
Bytes sent over the network from the server.•
Bytes sent over the network from the client.•
Maximum memory usage on the server.•
Maximum memory usage on the client.•

I would also have liked to measure the CPU utilisation, but I was not able to find a
satisfactory practical way to do this for each piece of software.

To get the time taken and the memory usage statistics, I used the GNU 'time' program. To get
the disk space statistics, I used the 'du' command. To get the number of file system nodes, I
used the 'find' command, piped to 'wc'. To get the network statistics, I was able to use the
linux firewall, 'iptables', to count the bytes going to and from particular TCP ports.

Immediately before each test, I would reset the firewall counters and flush the disk cache on
both server and client.

13

Since each test sequence might take a lot of time, scripts were written to automate the testing
process so that they could be run without intervention. The scripts had to be customised for
each backup software under test. These scripts are included with the software as part of the
submitted materials for this project.

I ensured that each software was configured with the same features for each test; there would
be no compression on the network or in the storage, and there would be encryption on the
network but not in the storage. For those software that had no native network support, this
meant running the software over secure shell (ssh).
During the initial testing, I discovered that burp's network library was automatically
compressing on the network, leading to incorrect results. I made a one line patch to the
versions of burp under test in order to turn off the network compression. This will become a
configurable option in future versions. I redid the initial testing of both versions of burp for
this reason.

These are the candidate software to be initially tested. For more verbose information on each
of these, see the Bibliography and Appendix F.
burp-1.3.36 was the latest version of the original burp at the time the testing was started.
burp-2.0.0 is the first iteration of the new software.

Software

Good
cross
platform
support

Native
network
support

Good
attribute
support

Good
imaging
support

Notifications
and
scheduling

Retention
periods

Resume
on
interrupt

Hard
link
farm

Inline
deduplication

amanda 3.3.1 No No Yes No Yes * Yes No No No

backshift 1.20 No No Yes No No * Yes Yes No Yes

backuppc 3.2.1 No No Yes No Yes Yes Yes Yes No

bacula 5.2.13 Yes Yes Yes No Yes Yes No No No

bup-0.25 No No No Yes No * No Yes No Yes

obnam 1.1 No No Yes Yes No * Yes Yes No Yes

rdiff-backup 1.2.8 No No Yes No No * No * No Yes No

rsync 3.0.9
--link-dest

No Yes Yes No No * No * Yes Yes No

tar 1.26 No No Yes No No * No * No No No

urbackup-1.2.4 No Yes Yes Yes Yes Yes Yes No Yes

burp 1.3.36 Yes Yes Yes No Yes Yes Yes Yes No

burp 2.0.0/1 Yes Yes Yes Yes Yes No Yes No Yes

* Possible with management via external tools, such as cron.

14

'Good cross platform support' means that the software is able to back up and restore a set of
files on Unix/Linux/Mac/Windows computers, and is able to use the Windows backup API.
'Good imaging support' means that the software is able to perform image backups and
restores efficiently.
'Hard link farm' means that the software saves its data in individual files, one for each file
that is backed up, and may hard link unchanged versions together. This can be beneficial on
small backup systems, and you can copy the files for restore using standard file system tools.
However, with large backup sets, they become unwieldy due to file system overhead.

5.1. Conclusions from feature comparison

When comparing the feature lists prior to doing any testing, it seems that the original burp is
already one of the best choices in the field, and some of its deficiencies are addressed by the
newly developed software.

For example, the only other software with good cross platform support is bacula. None of the
solutions offering inline deduplication except the newly developed software manage to have
good cross platform support.
I expected urbackup (Raiber, 2011) to be a good contender, but it turns out that it doesn't
work well on Linux, as described in the next section.

Many of the technically interesting offerings, such as bup-0.25 (Pennarun, 2010), lack
features that help with simplifying administration of a central server. A few of them, for
example backshift (Stromberg, 2012) and obnam (Wirzenius, 2007), are not really network
based solutions and require remote filesystems to be externally mounted so that they appear
to the software as local filesystems. These suffer appropriately in the testing that follows.

You may have noticed that the newly developed software has lost the ability to delete old
backups. This will be addressed in a future iteration beyond the scope of this project, but the
planned concept is explained in a following chapter about further iterations.

15

6. Initial test results

6.1. Software that did not complete the tests

backshift 1.20: I had to 'disqualify' this software, because its first backup took over 43 hours
to complete. Most other software took less than two hours for the first backup, so there was
not much point in continuing to test backshift. The raw figures for its first backup are
included in Appendix G.
It seems that backshift was suffering from the disk deduplication bottleneck problem, since it
looked like it was using one file system node for each chunk that it had seen, named in a
directory structure after some kind of checksum. Due to the way that it can only back up over
the network on a network mounted share, it was doing file system look ups for each
incoming checksum over the network. This must badly exacerbate the disk bottleneck
problem.

obnam-1.1: This software also had problems with the first backup that meant there was not
much point in continuing to test it.
It did not finish after eight hours, had taken up more than 50GB of space on the server, and
that space was rising. This was suprising as there were only 22GB of small files to back up.

urbackup 1.2.4: Although this software boasts an impressive feature list, I was not able to
complete the tests with it.
The main problem was that restoring more than one file at a time was impossible, and even
that had to be done with point-and-click via its web interface. That made restoring a few
million files impractical.
The online manual states "the client software currently runs only on Windows while the
server software runs on both Linux and Windows". However, at the time of running the tests,
I did find source for a Linux client, and its mode of operation was quite interesting and
unique - the server broadcasts on the local network, and backs up any clients that respond. If
this software gains better Linux support in the future, I think it will be one to watch.

6.2. Software that did complete the tests

The rest of the software completed the tests. I took the data and created a series of simple
graphs. The intention is to make it easy for the reader to interpret the results. I have also
included the raw data from the tests in Appendix G.

16

6.3. Areas in which the new software did well

In this section, I present the graphs representing the areas in which the software developed in
the first iteration did well. After that, I present the areas in which the new software did not do
so well.

In the graphs, I coloured the line representing the original burp red, the line representing the
new software green, and everything else grey. This is so that it easy to see the change in
performance over the original burp whilst still enabling comparisons against other software.

6.3.1. Time taken to back up

The time taken to back up was considerably improved over the original burp, particularly in
circumstances where lots of data changed between backups. It was mostly faster than, or
comparable to, other software in both small and large file test sequences. The slight
exception was the first backup that the software makes, although even that is within an
acceptable time frame.
I believe that this is because the software needs to checksum all the data that it finds on its
first run, and does not gain any advantage from time stamp comparison of a previous backup.
Software like tar (GNU, 1999) sends the data directly without calculating checksums, and
will probably always win on a fast network in terms of the speed of the first backup.
However, it will probably lose in terms of disk space used. Note also that, because amanda
(da Silva et al, 1991) uses a special mode of tar to do its backups, its line closely follows that
of tar and does well in this test.

The software that was generally fastest at backing up the large file was bup-0.25. However, it
is notable that it didn't perform well when that file had not been touched between backups
(the second test in the sequence). This is because although bup does inline deduplication, it
always reads in all the data, and doesn't do a check on file time stamps. This may be of
concern if your data set contains large files that don't change very often - for example, iso
images or movie files. It is notable too that it was generally slower than most software in the
small files test.

In the first of the following graphs, I have excluded rdiff-backup because its fifth and sixth
backups took about 11 hours and 12 and a half hours respectively. Since all the other
software took less than 2 hours, it was making the rest of the graph hard to read.

17

Time taken to back up small files, in seconds

Time taken to back up large file, in seconds

18

6.3.2. Disk space utilisation after backing up small files, in kbytes

The disk space utilised on the server after backing up small files was an area in which the
new software performed considerably better than the competition. For both small and large
file tests, it took up around 60% less space than the best of its rivals.

The difference between the original burp and the new burp by the sixth test in this graph is
around 23GB.

I have to admit that I was expecting bup-0.25 to do a bit better than it actually did in this test.
It is very gratifying that the new software used about half the space that bup did, because bup
was the only remaining contender with an inline deduplication feature.
Backuppc also performed impressively well, falling in the middle between bup and
burp-2.0.0. The file-level deduplication that it uses appears very effective on the data set.

One more notable thing about this graph is that it clearly shows the disadvantage of backing
up all the files every time - tar uses about 93GB of space in the end.

19

6.3.3. Disk space utilisation after backing up large file, in kbytes

The disk space utilised on the server after backing up the large file was another area in which
the new software performed better than the other contenders - that is, except for bup-0.25.
This is not completely obvious on the graph because the two lines are on top of one another.
In fact, they are so close that burp-2.0.0 uses less space for the first three backups, and then
bup-0.25 uses less for the last three. After the sixth backup, there is only 181MB between
them. Note that bup-0.25 actually stores some files on the client machine as well as the
server, which is something that no other software does.
This graph clearly demonstrates the weaknesses of software that has to store changed files as
complete lumps. Again, tar does particularly badly, but this time so do amanda, backuppc
(Barratt, 2001), bacula and rsync, all lying on almost exactly the same line not far beneath
tar.
Once more, backuppc's file-level deduplication performs surprisingly effectively as it
identifies the file with the same content at step four (timestamp update without changing file
contents) and step five (rename).
Finally for this test, burp and rdiff-backup perform identically. This is because they are both
saving old backups as reverse differences with librsync.

20

6.3.4. Number of file system entries after backing up small files

For the small files, the new software used fewer file system nodes than the 'link farm'
solutions by several orders of magnitude, which is to be expected. It was comparable to the
non-'link farm' solutions. This is because it can pack the chunks from many small files into
far fewer data files.

Creating the largest 'link farm' by far was rsync, which is to be expected because in
'--link-dest' mode, it creates a mirror of the source system for every backup. You may have
noticed rsync performing consistently well in the speed results, but this is really where it falls
down as a versioned backup system, because the number of file system nodes becomes
unmanageable. Here, there are eight million nodes for six backups.

I am somewhat surprised to see the original burp do better than the other 'link farm' solutions.
On reflection, it must be because it has a mechanism whereby older backups do not keep a
node referencing a file that is identical in a newer backup.

21

6.3.5. Number of file system entries after backing up large file

For large files, it is notable that the new burp creates more nodes than all the other solutions.

This is because chunks making up the file need to be split over several data files, whereas the
'link farm' solutions will only use one node. Also, it appears that the inline deduplication of
bup-0.25 packs its chunks into fewer, larger data files than burp-2.0.0.

At first glance, this doesn't look like a good result for burp-2.0.0. However, in reality, it is
more than satisfactory, because it still only used a manageable figure of around 1000 nodes
for the large file tests anyway.
Further, this figure will not vary very much if identical data were spread across multiple files
and then backed up - whereas software using a node for each file would increase linearly
with the number of files.

22

6.3.6. Network utilisation when backing up small files, in bytes

When backing up small files, the new software performed better overall than other solutions
in terms of network utilisation during backup. This is because the way that it deduplicates
means that it only needs to send chunks that the server has not previously seen.
If you look closely (or check the raw data), you can see that amanda, backuppc, bacula, bup,
and rsync all beat it at steps two, three, and four. I am not entirely sure why this might be.
Perhaps it is because burp sends a complete scan of the file names and statistics for every
backup, and maybe the other software have a more efficient way of doing the same thing.
This deserves investigation at some future time.
However, this is more than made up for by the massive differences between the new software
and the nearest rival at steps one and five, where it uses less than half the bandwidth of
bup-0.25.

Also worth pointing out with this graph is the strange behaviour of backuppc on its last
backup, where I would have expected the figure to drop, as all the other backups did. At first
I thought this was a transcription error, but the figure in the raw data looks plausible, and
different from the figure at step five. I cannot explain this, and it may be worth testing
backuppc again to see if this behaviour is repeated.

23

6.3.7. Network utilisation when backing up large file, in bytes

Once more, the new software generally performs better than the competitors in terms of
network utilisation when backing up large files, with the exception of bup-0.25, which is so
close it overlaps with burp-2.0.0's line.

What jumps out at me from this graph is how badly all the software except the inline
deduplicators (bup-0.25 and burp-2.0.0) do when the file to back up is renamed (step five) -
this causes them to send 25GB across the network, as opposed to burp-2.0.0's 290MB, and
bup's very impressive 63KB.

In fact, I have to concede that, if you look at the raw figures, bup clearly performs the best in
this test, with burp-2.0.0 a few hundred megabytes behind. It should be noted though that
there is a massive void between burp-2.0.0 and the next nearest competitor.

24

6.3.8. Network utilisation when restoring small files

We find that the new software was comparable to the other solutions in terms of network
utilisation during restore, and all the solutions except amanda followed a nearly identical
path.

Tar did the best in the category, although the difference was minor. I believe that burp's
performance here could be considerably improved by sending the blocks and instructions on
how to put them together instead of a simple data stream. There is more on this idea in the
'future iterations' section of this report.

The other notable remark to make about this test was the strange behaviour of amanda on the
later restores, where it suddenly leaves the path set by all of the other software and the
network usage shoots up.

Amanda has an odd tape-based mentality, and on disk, it creates files that it treats like tapes,
with one backup per tape (file).
When you ask it to restore all files from incremental backup 5, it will go through each
previous 'tape' in turn, and restore everything that doesn't have an identical name in a
subsequent backup. If a file was deleted in a subsequent backup, it will delete the file that it
just restored.

In the case of the large file test, this means that nothing odd happens until the file is renamed
in step 5. When restoring that, amanda first restores the original file name, then deletes it and
restores the renamed file. Since it restored two large files, the network utilisation is high.

This is clearly very inefficient behaviour when you have the ability to seek to any point in a
disk much faster than you can with tapes.

25

Network utilisation when restoring small files, in bytes

Network utilisation when restoring large file, in bytes

26

6.3.9. Maximum memory usage of client when restoring small files

Before analysing the data in the graphs in this category, it should be noted that, for the
software that uses ssh for its network transport mechanism, the memory usage of ssh itself
was not captured. At the very least, this would add a few thousand KB to their figures.
The software that this should be considered for are amanda, backuppc, bup, rdiff-backup,
rsync and tar. All of them except bacula and burp, which have their own network transport
mechanism.
With this in mind, it should be clear from the following graphs that both the original and new
versions of burp perform the best in terms of memory usage on the client side during
restores. The client restore mechanism didn't change between the two burp versions, but the
server side restore did. This is demonstrated in the next section.

Note also that I was unable to measure the client memory usage of backuppc during the
restore, so it doesn't appear in the graphs. However, the result would have been equivalent to
tar over ssh, since that is the mechanism that backuppc uses to restore files on Linux.

Coming out badly in the small file category were rsync and, in particular, rdiff-backup which
did three times worse than rsync. For the large file category, there wasn't actually much
material difference between the contenders.

Maximum memory usage of client when restoring small files, in kbytes

27

Maximum memory usage of client when restoring large file, in kbytes

28

6.4. Areas in which the new software did not do so well

6.4.1. Time taken to restore

Firstly, the time taken to restore files takes twice as long as the original burp, and at least
four times as long as solutions like tar and rsync that are not having to reassemble files from
disparate chunks in a selection of storage files.

This is to be somewhat expected. It could be argued that, since a restore happens far less
often than a back up, that this state of affairs is acceptable - time regularly saved during
backing up is likely to exceed the time spent waiting longer for an occasional restore.
Nonetheless, I will attempt to improve the restore times in later iterations because it is
understood that people want to recover quickly in a disatrous situation.

A result that I found unexpected here was the impressive speed of bup-0.25, which is in the
same region as tar and rsync. Since bup, like burp-2.0.0, has to reassemble chunks from its
storage, I was expecting it to be slow. So how does it manage this? A probable reason for this
kind of performance can be found in the later section about server memory usage.

Time taken to restore small files, in seconds

29

Time taken to restore large file, in seconds

30

6.4.2. Maximum memory usage of server when restoring

This is an area in which bup-0.25 does spectacularly poorly, using up all the memory
available on the server. This is how it manages to restore so quickly, because it must be
loading all of the chunks it needs to send into memory. By that, I mean all of the data and
probably a full index of all the checksums as well. This means that it can look up each chunk
to send very rapidly, making it nearly as fast as software that only needs to send the data
without doing any lookups.

The memory usage of bup-0.25 (or more specifically, the 'git' backend that it uses to do the
heavy work) is so bad that it makes burp-2.0.0 look reasonable by comparison, when it really
isn't. If bup were not being tested, burp-2.0.0 would be the worst performer by a large
margin, using 1.5GB consistently.

This is something that I will attempt to improve in the second iteration, by improving the
storage format and lookup algorithms so that the server holds less data in memory at any one
time.

Tar is missing from the graphs because I was unable to capture the server ssh memory usage.
Although, as it was the only server process running, it would have used minimal memory
anyway.

Amanda is also missing from the graphs. Due to the complexity of the multiple child
processes involved in an amanda restore, I was not able to capture server memory figures for
it. I would estimate, based on knowledge of how it works, that its memory usage would be
minimal.

And rdiff-backup is also missing from the graphs. I was unfortunately unable to capture
figures for it when restoring large files, despite several repeated attempts.

31

Maximum memory usage of server when restoring small files, in kbytes

Maximum memory usage of server when restoring large file, in kbytes

32

6.4.3. Maximum memory usage of server when backing up small files, in kbytes

The memory usage of the new software when backing up small files is an area in which the
new software, although not the worst performer, has scope for improvement. This is because
it is loading all the chunk checksums that it has ever seen, and their locations, into memory in
order to perform the inline deduplication. The second iteration of the new software will
attempt to mitigate this by implementing sparse indexing. This will mean that only a small
percentage of checksums and their locations will be loaded into memory.
It is notable that the original burp does very well in this test. It generally holds a minimal
amount of data in memory, and when reading files, it tends to fill a fixed sized buffer and
process it straight away, rather than reading the whole of the file into memory. Other
solutions doing well were amanda, bup-0.25, and rsync.
Some might observe that bacula is not doing well on any of the server memory tests. It has a
severe handicap in this area, because it relies on a mysql database process, which was
measured as part of its tests.
There are large peaks on the first step and the fifth step (rename) for rdiff-backup, showing
that it uses far more server memory when there are new files to process.
Tar is missing from the graphs because I was unable to capture the server ssh memory usage.
Although as it was the only server process running, it would have used minimal memory
anyway.

33

6.4.4. Maximum memory usage of server when backing up large file, in kbytes

This is clearly an area in which burp-2.0.0 does spectacularly poorly, using seven times as
much memory as bacula, the next worst out of the contenders.

Again, this is because it is holding a full index of all the checksums in its memory, and this is
something that will be addressed in the second iteration by implementing sparse indexing.

All the other software, except bacula, performed in a similar range to each other. There are
obvious peaks for bup-0.25 when there are new file names to process, but it never gets worse
than bacula. The original burp does very well.

Tar is missing from the graphs because I was unable to capture the server ssh memory usage.
Although as it was the only server process running, it would have used minimal memory
anyway.

34

6.4.5. Maximum memory usage of client when backing up small files, in kbytes

As with the server memory usage, this is an area in which the new software performs badly.
It has high memory utilisation because, for each file that the server asks for, the client has to
load all the chunk data and their checksums into memory. It keeps them in memory until the
server asks for them, or indicates that it doesn't need them. There is a built in limit to this
already - the client will keep a maximum of 20000 blocks in memory at once. When it
reaches this limit, it will not read in any more until it is able to remove at least one of those
blocks from memory.
Perhaps of some concern is the peak in memory usage on the first backup of each sequence,
when I was expecting the line on the graph to be flat. I am currently unable to explain this - it
may indicate some kind of memory leak. I will address this again later in the report.

After its first backup, bacula does poorly. I believe that this may be because the server sends
the client a list of all the file names that it has seen before in order to deduplicate on time
stamps, and the client holds them in memory.
Again, all the other software perform within a similar range to each other.
Missing from the graph are amanda and backuppc, for which I was unable to get figures.
However, since they both use tar over ssh in order to retrieve files from clients, it is fair to
say that they would have performed similarly or even identically to the results for tar.

35

6.4.6. Maximum memory usage of client when backing up large file, in kbytes

Finally, the new software performed badly at steps 1 and 3 (altered file contents). At steps 4,
5 and 6, it performed similarly to the second worst software in this area, bup-0.25. It did beat
bup-0.25 at step 2, where bup's lack of file level time stamp checking meant it had to read the
whole file in again.

The rest of the software performed within a similar range to each other, with tar being the
best in this field. Bacula showed a strange peak at the last step (file trunaction), taking its
memory usage above that of bup-0.25 and burp-2.0.0. I don't have a sensible explanation for
this.

Missing from the graph are amanda and backuppc, for which I was unable to get figures.
However, since they both use tar over ssh in order to retrieve files from clients, it is fair to
say that they would have performed similarly or even identically to the results for tar.

36

7. The second iteration

Having a set of test results, the second iteration could now be produced in order to attempt to
address the weaknesses of the first iteration.

As already mentioned, the plan for the second iteration was to now implement sparse
indexing in order to eleviate the memory usage of the server.

There were no plans at this point to improve the restore times, or the client memory usage,
other than to continue to improve the efficiency of the code in general. These factors will be
addressed again in the 'conclusion and evaluation' section of this report, where future plans
will be explained.

The documents that were originally written for the second iteration were not quite right, and
needed to be modified due to some slight misconceptions from earlier designs.

Again, due to space limitations in the main report, the designs for the second iteration are
reproduced in Appendix E.

The implementation of the second iteration was completed at the end of November 2013.

37

8. Final test results

Upon implementing the design changes in the previous section, the new software was
retested and graphs produced that demonstrate the changes in performance.

The graphs are the same as in the original testing, except that a new blue line for 'burp-2.0.1',
the new software, has been added.

Firstly, I present the results for which the new software previously did well. This will
demonstrate that, for those, that good level of performance remained unchanged after the
second iteration. These graphs generally need no commentary because that has already been
done adequately in the chapter on the initial results.

After that, I present the results for which the new software previously did poorly and look for
whether the second iteration made any significant change, either good or bad.

8.1. Areas in which the second iteration continued to do well

Time taken to back up small files, in seconds

38

Time taken to back up large file, in seconds

Disk space utilisation after backing up small files, in kbytes

39

Disk space utilisation after backing up large file, in kbytes

Number of file system entries after backing up small files

40

Number of file system entries after backing up large file

The second iteration clearly affected the results here, with each backup adding a little fewer
than 1000 new file system nodes.

The reason for this is that the design of the second iteration split up the manifest files
(containing information on how to reconstruct each backed up file out of blocks) into
multiple smaller pieces. This was done in order to be able to have a sparse index for each of
the smaller manifest pieces, rather than a full index on every block that has ever been seen.

Although the change in the graph looks dramatic, there are still less than 5000 file system
nodes in use by the last backup. As explained previously, this figure will not vary very much
if identical data were spread across multiple files and then backed up - whereas software
using a node for each file would increase linearly with the number of files (note the test
results for file system nodes when backing up many small files). Consequently, I am happy
to maintain that this is still a good result for the new software.

41

Network utilisation when backing up small files, in bytes

Network utilisation when backing up large file, in bytes

42

Network utilisation when restoring small files, in bytes

Network utilisation when restoring large file, in bytes

43

Maximum memory usage of client when restoring small files, in kbytes

Maximum memory usage of client when restoring large file, in kbytes

44

8.2. Areas in which the second iteration showed improvement

8.2.1. Time taken to restore small files, in seconds

The time taken to restore small files was improved slightly. I cannot give any particular
reason for this, other than perhaps improving code efficiency between the two versions. Note
that the benefit of sparse indexing only relates to backing up, not restores.
On reflection, there was some work focused on factoring out functions related to reading and
writing manifest files into a class-like structure. This, at least, improved ease of maintenance.

Another reason for the improvement could possibly have been due to the changes in the
structure of the data storage, getting rid of the signature files and holding them only in the
manifests. I didn't expect this to improve the speed when I did it, because the first iteration
didn't look at the signature files on restore anyway. However, maybe there was an efficiency
improvement there that I overlooked.

Regardless, although the test showed improvement in this area, the new software is still not
doing well when compared to the other solutions.

45

8.2.2. Time taken to restore large file, in seconds

The time take to restore the large file had a much more significant improvement than that for
the small files.

My thoughts on the reasons for this obviously echo the speculation in the previous section to
do with improved code efficiency and the changing storage structure.

However, although there was a large improvement, the new software is still not doing
particularly well in this category.

The following chapter on further iterations proposes a possible method of improving the
restore times, and describes my initial implementation of that method.

46

8.2.3. Maximum memory usage of server when restoring

There is significant improvement in the second iteration for both large and small file restores
in terms of server memory usage.

The small file memory was reduced to a third of the original result, and the large was halved.
This is excellent.

Both sets of figures are now comparable with each other. This seems to suggest that the
original iteration had some sort of memory problem relating to client file names, because
there really shouldn't be much difference between the memory usage for restoring lots of
small files and restoring a large file - the server is just sending a stream of blocks being read
from a similar number of manifest files.

The memory for small files has now dropped below bacula's figures. I don't think that this
can be improved further without altering the method for restore, as explained in the following
chapter about further iterations.

Maximum memory usage of server when restoring small files, in kbytes

47

Maximum memory usage of server when restoring large file, in kbytes

48

8.2.4. Maximum memory usage of server when backing up

This is the area in which I had hoped to see improvement due to the addition of the sparse
indexing feature. Rather than loading a full index into memory, the server will load a much
smaller sparse index, then only fully load the manifest pieces that have a high chance of
matching the next incoming blocks.

And indeed, in both small and large file restores, there is significant improvement. And this
time, it brings the new software to a comparable level with the better group of its
competitors. This is excellent.

The only problem that I have with this is that there are peaks in the small backup at steps one
and five (renames). I believe that this is something to do with the way that the server receives
the file system scan and deals with new file names. I have a potential solution to this that I
will describe in a later chapter.

Maximum memory usage of server when backing up small files, in kbytes

49

Maximum memory usage of server when backing up large file, in kbytes

Important note: the graph above is showing that the memory usage of the server has been
limited by the implementation of sparse indexing. In conjuction with the results showing that
the disk space use changed negligibly between iterations and that the time taken actually
decreased, this indicates that sparse indexing is an effective alternative to keeping a full
index in memory, and hence also an effective solution to the disk deduplication bottleneck.

50

8.3. Areas in which the second iteration performed badly

8.3.1. Maximum memory usage of client when backing up small files, in kbytes

The results for this test did not change to any significant degree. This is to be expected, since
no changes were specifically made in the second iteration to improve this.

8.3.2. Maximum memory usage of client when backing up large file, in kbytes

Finally, we come to the worse result of all. When backing up large files, the situation actually
became worse after the second iteration. I was expecting the results to remain similar to the
previous iteration.
However, on reflection, there is a reasonable explanation for this behaviour.

When backing up, the client reads data into memory, splitting it into blocks and
checksumming them. It then needs to keep the blocks in memory until the server has told it
either to send or to drop them.

51

The code limits the client to keeping 20000 blocks in memory at once. The blocks are an
average of 8KB each, according to the parameters input into the rabin algorithm. 20000 x
8KB = 160000KB, which matches the peaks we see in the graph.
My theory is that, for the first iteration, the server was fast enough at processing incoming
blocks that the client only ever loaded the maximum amount of blocks at some point during
the first backup. And, after the second iteration, the server was slowed down slightly by
having to load the right pieces of manifest based on the sparse index, giving the client a
chance to fill up its memory with more blocks.

If this is really the case, a future possibility is to experiment with reducing the number of
blocks that the client will keep in memory at any one time. Without changing anything else,
this could be as low as 4096 blocks - the number that the server is currently counting as a
segment to deduplicate. This should bring the maximum memory usage down to 4096 x 8KB
= 32768KB, which is a better figure than bup-0.25's average in the large file tests, and would
also be one of the better results in the small file tests.

However, reducing the buffer that low is likely to impact other results, such as backup speed,
because the client will be waiting on the server more often.
Consequently, more experimentation is required in order to find a satisfactory balance.

52

9. Further iterations

Since completing and testing the second iteration, the software has been further improved in
various ways through further development.

An attempt has been made to improve the restore time and restore network utilisation.
The idea was to make a list of all the data files containing the required chunks on the server
side, then send them to the client, which would store them in a 'spooling' area. The server
would then send the sequence of chunks to be read from the data files to reconstruct the
original files. In this way, the reconstruction of the original files moves from the server side
to the client side, and blocks are only transferred once, albeit with potentially unneeded ones.

It is possible that, in some situations, this is less efficient. For example, when a small file
containing a single chunk is required by the user. So, I implemented a simple mechanism that
first estimates the data that needs to be sent by both restore methods. If the 'spooling' method
needs to send less than some percentage (I arbitrarily chose 90%) of the total data of the
'streaming' method, the 'spooling' method is chosen.

However, the burden is then on the client to then reconstruct the original files from the data
files. And, assuming the client has one disk, it will probably try to doing many reads and
writes simultaneously. On my test setup, this meant that the client disk write speed was
slower and hence the restores became slower. Regardless, the network utilisation was
massively improved, benefiting from the deduplication of the chunks being transferred. It
was using around a third of the network bandwidth that the other solutions used - around
12GB less.

9.1. Additional work required prior to release

Before the software is properly released to the public, I have a list of items that I would like
to address. These are reproduced in Appendix H. There are some important items to do with
locking write access to data files, for example, so that multiple clients backing up
simultaneously do not interfere with each other.

A design element that I believe I got wrong in the completed iterations was to do the client
file system scan in parallel with the backing up of data. Firstly, this makes the backup code
more complicated. Secondly, it means that the original burp's progress counter system no
longer works. When the file system scan is done as a separate stage at the start, you know

53

how much data is left to back up and can provide time estimates. Thirdly, both client and
server have to keep the scan data in memory, which affects the memory statistics. If the
software reverted to the original burp's file system scan, the memory usage for the scan
would be minimal.

Although I am very pleased with the new software, I am aware that there are existing burp
users who may prefer the original. For example, those that run the server on a 'plug computer'
containing minimal resources such as memory, or those that like the ability to copy files
direct from storage (as opposed to using the client software).
Since there is a lot of shared code between the old and new versions, I plan to implement a
mode where you can choose to run it and get the old behaviour. This would also help existing
users to transition. You may have clients using the old behaviour, and slowly add new style
clients, for example.
Implementing this requires merging the unique parts of the original burp into the new code.

The last one of these items that I would like to note is the ability to delete data files and
backup directories that are no longer required. This is often problematic for software that
does deduplication, because it is hard to know if all the saved blocks in a data file are no
longer referenced. For example, the disk space that bup-0.25 uses only ever grows.

My idea for this is to maintain summary files in a similar way to that in which the sparse
indexes are maintained.

Whenever a new backup is done for a client, a summary file would be generated that lists the
data files that the backup used. Then another summary file is updated that encompasses all of
the client's individual backup summaries. One of these second summaries is kept for each
client.
When a client backup directory is deleted according to the retention periods set, a new
summary file for that client is generated from the individual backup summaries.
On comparing the new and old summary file, if it is found that a data file is no longer
referenced, the other top level client summaries are checked. If the reference is not found,
then the data file can be deleted and disk space is recovered.
Since the sparse index maintenance code is already doing a very similar job, these summary
files can be produced at the same time with the same code. Therefore, I believe the overhead
for this will be minimal.

I estimate that the work given in Appendix H to take around two months to complete.

54

10. Conclusion

The main aim of the project was to improve upon the existing 'burp' software to produce the
basis of a new open source cross platform network backup software that is demonstrably
superior to others in the same field.

As explained in a previous chapter, research on the software available showed that the
original burp (and hence the new software), was one of the strongest in terms of supported
features.

The new software was then shown under test to be either superior or comparable to its
'competition' in terms of backup speed, storage space, storage nodes, and network utilisation.

It only performed satisfactorily in terms of restore speed, although there are ideas for
improving this in the future.

Upon the implementation of sparse indexing, server memory usage was either satisfactory or
comparable to the best of the other solutions.

Client memory usage is a potential issue, with the new software performing worse than other
software. However, experiments to reduce the size of the client block buffer will be
performed for future iterations, with the expectation that the client memory usage can be
brought down to a level consistent with other software. This expectation was shown using
simple calculations based on average block size and the existing test results.

When taking into consideration both the test results and the feature comparison, I have no
doubt that the new software will be a better choice than the other options currently available.

It should be noted that the new software is not quite ready for release at the time of writing.
Appendix H reproduces a list of the remaining work to be done over the next few months
before its first official release.

55

10.1. Answering the research questions

The first research question asked whether incorporating inline deduplication techniques can
improve open source backup offerings and produce an empirically superior product.
This paper has demonstrated that it can.

The second research question asked whether sparse indexing is an effective solution to the
disk deduplication bottleneck.
It was noted that another software solution, backshift, does lookups on a full index located on
disk. And it took longer than two days to complete its first backup.
The design of the new software never actually referenced the full index on disk while chunks
of data were incoming. The first iteration loaded the full index into memory at the start, then
did the lookups in RAM. This was shown in the high results for server memory usage during
backing up.
Upon implementing sparse indexing, it was shown that server memory usage of the new
software when backing up was effectively limited without notably reducing the effectiveness
of the deduplication.
Therefore, I am confident in claiming that sparse indexing is an effective solution to the disk
deduplication bottleneck.

56

11. Evaluation of the project as a whole

In order to produce the new software, I initially produced a list of objectives. During the span
of the time allocated to this project, I was able to achieve all of the objectives, as follows.

Core: Complete a search and review of popular existing open source network backup
solutions, explaining the areas in which current backup offerings are flawed.
This was done early on in the project, and the results can be read in 'Appendix F - Open
source competition'.

Core: Complete a literature search and review of relevant algorithms and techniques that will
be needed to implement a new software engine.
This was also done early on in the project, and the information learnt was used in the design
of the new software engine.

Core: Design and develop the new software.
The design was fairly quick, but the actual development took a significant amount of time,
including proof of concept programs and iterations of the final software. The iteration used
for the test results was completed with around a month of time remaining before the project
deadline.

Advanced: By conducting suitable tests and analysis, prove that the new software is superior
to other offerings.
The new software was tested and shown to be either comparable or superior to other
solutions in most areas, with the exception of client memory usage. This will be addressed
before the initial release of the new software.

Advanced: Demonstrate that sparse indexing is an effective solution to the disk deduplication
bottleneck.
Another deduplicating solution (backshift) taking longer than two days to complete one
backup demonstrated the bottleneck problem.
Analysis of the new software's results for server memory usage, disk space and the time
taken for backing up showed that sparse indexing was an effective solution.

Core: Complete the final project report.
The final project report was completed before the deadline.

57

Overall, I was pleased with the way that the project went. I put a lot of my spare time into
this, and with a little more work the result has the potential to be useful to many people.

The two hardest parts of the project were implementing the multiple streams of asynchronous
I/O, and the testing of the various software.

The former would have been made slightly simpler if I had left the file system scan part as a
separate phase before backing up the data, which would then only require two streams in
each direction instead of three.

Testing the various backup solutions was hard because of the amount of time involved with
it. I would very often run a test sequence over a few days, and find at the end that I would
have to run it again for some reason. For example, network compression may have been
turned on and so the results could not be compared fairly against other solutions that were
not doing network compression.

Fortunately, as mentioned in the Intermediate Project Report, I began the testing ahead of
schedule and was therefore able to resolve these issues and complete the testing on time.

The decision to continue to code in C was the correct one, as I think I would not have
finished the iterations in time had I tried to move to C++. However, the object-orientated
style of coding that I am moving towards seems effective enough.

In the end, I find it surprising that the ideas utilised during this project have not already been
combined in open source software. Perhaps a possible explanation for this is that the hard
work that is involved with the development of this kind of software causes the authors to
wish to sell the results. I do not intend to do that, but I can see a potential route to
remuneration via providing support for the software instead. That is, if it really does turn out
to be useful to other people.
It would be fantastic to work on this software full time.

58

Bibliography

This is a list of references that I have consulted in relation to work in the area.

Barratt, C. (2001). BackupPC. Available at: http://backuppc.sourceforge.net/. [Accessed 28th
September 2013]

Beck, K; et al. (2001). Manifesto for Agile Software Development. Available at:
http://agilemanifesto.org/. [Accessed 12th February 2013]

Broder, A. (1993). Some applications of Rabin's fingerprinting method. Sequences II.
Springer New York. 143-152.

Denisov, V. (2012). Performance issue resolution for large files. Available at:
http://sourceforge.net/p/librsync/patches/11/. [Accessed 26th May 2013]

Eastlake, D. (2001). US Secure Hash Algorithm (SHA1). Network Working Group Request
for Comments: 3174.

Escoto, B; et al. (2001). rdiff-backup. Available at: http://rdiff-backup.nongnu.org/.
[Accessed 28th September 2013]

Eshghi, K. (2005). A Framework for Analyzing and Improving Content-Based Chunking
Algorithms. HP Laboratories Palo Alto.

Germain, S. (2012) Revolutions dans le monde de la sauvegarde de donnees. Available at:
http://linuxfr.org/news/r-evolutions-dans-le-monde-de-la-sauvegarde-de-donnees/. [Accessed
26th May 2013]

GNU (1999) GNU Tar Available at: http://www.gnu.org/software/tar/ [Accessed 26th May
2013]

Keeling, G. (2011). Burp - BackUp and Restore Program. Available at: http://burp.grke.net/.
[Accessed 26th May 2013]

Langford, J. (2001). Multiround Rsync.

Lillibridge, M; et al. (2009). Sparse Indexing: Large Scale, Inline Deduplication Using

59

Sampling and Locality. Proceedings of the 7th conference on File and storage technologies.

Meyer, D. T; et al. (2012). A Study of Practical Deduplication. ACM Transactions on
Storage (TOS), 7(4), 14.

Pennarun, A. (2010). bup. Available at: https://github.com/apenwarr/bup/. [Accessed 28th
September 2013]

Pool, M; et al. (2004). librsync. Available at: http://librsync.sourceforge.net/. [Accessed 26th
May 2013]

Raiber, M. (2011). urbackup. Available at: http://urbackup.sourceforge.net/. [Accessed 28th
September 2013]

Rabin, M. (1981). Fingerprinting by Random Polynomials. Technical Report TR-15-81,
Center for Research in Computing Technology, Harvard University.

Rivest, R. (1990). The MD4 Message-Digest Algorithm. Network Working Group Request
for Comments: 1186.

Rivest, R. (1992). The MD5 Message-Digest Algorithm. Network Working Group Request
for Comments: 1321.

Rosenquist, N; et al. (2003). rsnapshot. Available at: http://www.rsnapshot.org/. [Accessed
14th September 2013]

Royce, W. (1970) Managing the Development of Large Software Systems. Proceedings of
IEEE WESCON 26 (August): 1-9.

rsync-3.0.0-NEWS (2008). Available at:
http://rsync.samba.org/ftp/rsync/src/rsync-3.0.0-NEWS [Accessed 26th May 2013]

Schwaber, K. (2004). Agile Project Management with Scrum. Microsoft Press.

Shore, J. & Warden S. (2007) The Art of Agile Development Cambridge: O'Reilly.

Sibbald, K. (2000). Bacula. Available at: http://bacula.org/. [Accessed 26th May 2013]

60

da Silva, J; et al. (1991). Amanda. Available at: http://amanda.org/. [Accessed 28th
September 2013]

Stromberg, D. (2012). backshift. Available at:
http://stromberg.dnsalias.org/~strombrg/backshift/. [Accessed 28th September 2013]

Tridgell, A. & Mackerras, P. (1996). The rsync algorithm. The Australian National
University.

Tridgell, A. (1999). Efficient Algorithms for Sorting and Synchronization. Australian
National University.

Wells, D. (2009) Extreme Programming: A Gentle Introduction. Available at:
http://www.extremeprogramming.org/. [Accessed 10th February 2013]

Whitten, J. & Bentley L., (2007). Systems Analysis and Design Methods 7th edition.
McGraw-Hill Irwin.

Wirzenius, L. (2007). obnam. Available at: http://liw.fi/obnam/. [Accessed 28th September
2013]

Zhu B; et al. (2008). Avoiding the Disk Bottleneck in the Data Domain Deduplication File
System. Proceedings of the 6th USENIX Conference on File and Storage Technologies. Vol.
18.

61

Appendix A - How the original 'burp' works

Burp has a client/server design. The machines to be backed up are the clients, and the
machine that stores the backups is the server.

The clients are usually set up to regularly contact the server at short intervals of, for example,
20 minutes.
The server decides whether or not it is time for the client to be backed up, based on
configuration options that give it timebands and minimum time elapsed since the last
successful backup.

This has several advantages over a system like bacula, where a central server contacts the
clients on a schedule. For example:

Firewalls tend to allow outgoing connections far more frequently than incoming
connections. Having the clients connect to the server rather than the other way round
means that only access to the single server port is required. This is a huge
administrative advantage.

•

Server logic that deals with retrying after failed backups becomes massively
simplified. The client will connect again in a few minutes time, and the decision is
simply over whether that client has a recent enough successful backup, and whether
it is still in timeband. Conversely, having the server initiate connections on a
schedule means that it also needs complicated logic for scheduling retries. Indeed, I
found this impossible to configure successfully in bacula.

•

Network connections use the OpenSSL library to secure communications. There is an
automatic certificate signing and exchange mechanism to provide confidence and certainty
that subsequent communications are with the same peer.

When a client initiates a connection, the server forks a child process to deal with it. A nice
feature is that the configuration for the client on the server is read in at this point, meaning
that most configuration changes do not need the administrator to reload or restart the server.

62

A.1. Backup sequence

There are four phases to the backup sequence.

In the first phase, the client scans its file system (based upon user configuration to include or
exclude files) and sends the results to the server. The scan includes path names and meta
information, such as file system entry type (regular file, directory, soft link, etc), permissions,
time stamps, and so on. Retrieving this information is fast because no files are actually
opened at this point - it is just file system data.
The server records all this information in a file called the 'manifest'.

In the second phase, the server reads through the manifest from the immediately previous
backup and the new manifest. Because the paths in the manifests are always in alphabetical
order, only a single pass is required.

If it finds files that do not exist in the previous manifest, it asks the client to transfer the
whole file.
If it finds files in both manifests where the modification times are the same, it makes a note
that that file has not changed.
If it finds files in both manifests where the modification times are different, it initiates a
transfer using librsync. It reads the previous version of the file in order to generate
'signatures'. It sends the signatures to the client, and the client uses them to transfer only
blocks that have changed. This results in a 'delta' file appearing on the server. There is more
on librsync and its limitations, or problems, below.

When the second phase is complete, the client has no more work to do, and disconnects from
the server.
However, the server child process still has more to do.

In the third phase, the server combines the notes that it made of what was and was not
transferred, and builds a final manifest for the backup. This is a very quick phase, usually
taking only a few seconds.

In the fourth phase, the server goes through the final manifest and the new files and deltas on
disk, along with the unchanged files from the previous backup, and finalises the new backup.
It needs to apply the deltas to the previous files to generate new files, and it makes hard
linked entries to represent the unchanged files.

63

Optionally, it can then generate reverse deltas to take you from the latest versions of files to
the previous versions, and deletes the original file from the previous backup. This can save
significant disk space, but could add significant time to this phase, as well as adding to the
time needed for restore.

A.2. Storage directories

To do a restore from any backup in a sequence, the server will only ever need to access that
backup, and possibly subsequent backups. It will never need to access previous backups in
the sequence.
This means that it is always 'safe' to delete the oldest backup in the sequence. This is not the
case for backup solutions where you need access to older backups to recreate newer backups
(bacula, for example). For such solutions, a satisfactory retention policy is highly
problematic.

So, the resultant burp backup directories contain a manifest file, and a heap of (possibly very
many) files and (optionally) deltas.

Since the files are stored in a directory structure that reflects the original client, a convenient
way to restore a file is just to copy it directly out of the storage directory, rather than using
the burp client.

A client's sequence of backups is always self-contained. That is, no information external to
them is needed for them to be complete. Additionally, if you are not generating reverse
deltas, each individual backup is self-contained. This is an advantage over backup solutions
like bacula that use a separate 'catalogue' to store paths, meta data and storage locations.
Such solutions add a significant administrative headache and many opportunities to end up
with useless backups. You must have provision to back up your catalogue, for example.

A disadvantage to the burp storage structure is that there may be millions of files in a single
backup, each needing its own file system entry. This will slow down the fourth phase of a
backup significantly. Especially if you have set up your backup server to use Network
Attached Storage (NAS), where each 'stat' system call goes over the network.

64

A.3. Deduplication

Burp's deduplication mechanism operates 'after the fact', as it were. It has a separate program
that can be run on a cron job, which scans the storage file system looking for duplicate files.
When it finds one, it replaces it with a hard link.
Obviously, this takes significant time when there are millions of files to scan. It also does not
deduplicate chunks within files. The deduplication program is not run on a default install of
burp.

It would be far preferable to have an 'inline' deduplication mechanism, where the
deduplication happens to chunks during the usual backup process. A backup solution that
does this is 'bup'.

65

Appendix B - Design of the proof of concept programs

In order to ensure a solidly functional rabin algorithm and disk storage format before
embarking on the complex asymetric network i/o that will be required for the first iteration of
the software, I designed and implemented some proof of concept programs.

The idea was to have programs that could use simple i/o so that data streams could simply be
piped between them, or written to or read from files.

So, there are four programs: 'client', 'server', 'tneilc' and 'revres', and they operate in pairs.

files on disk backup stream backup stream manifest file

----------> client -------> ----------> server ---> signature files

 data files

files on disk restore stream restore stream manifest file

<---------- tneilc <------- <---------- revres <--- signature files

 data files

'client': Given a list of files, it reads them from the disk, splits them into variable length
chunks, generates signatures, and outputs a backup stream (either to a file, or on standard
output). There are options available for tweaking the rabin fingerprinting parameters.

Usage: client [options] <input file> ...

 -o output file

 -w sliding window size (between 17 and 63)

 -a average block size

 -m minimum block size

 -x maximum block size

'server': Reads a backup stream on standard input or from a file, and converts the file names,
signatures and data to a storage format on disk. The storage format consists of three parts:
a) Data files, containing actual chunks of data.
b) Signature files, containing the signatures for the data files.
c) A manifest, containing the paths of the original files, and a list of the signatures that
represent the data making up the original file.
The server will read any existing signatures on disk into memory at the start of execution.
If the server has seen a chunk in the backup stream already, it will not save it twice. It will

66

instead save the signature reference to the manifest and discard the duplicate data.

Usage: server [options] <input file> ...

 -d <directory> directory for output

'revres': The reverse of 'server'. It reads a manifest file and converts the data it references into
a restore stream, which can be output to a file, or to standard output.

Usage: revres [options] <input file> ...

 -d base directory

 -o output file

'tneilc': The reverse of 'client'. It reads a restore stream, and converts it back into the files that
were originally backed up.

Usage: tneilc [options] <input file> ...

 -d <directory> directory for output

Examples of the expected usage of these programs:

To back up two files, named 'a' and 'b':

client README | server -d /tmp/storage

To restore them:

revres -d /tmp/storage/ /tmp/storage/man/0 | tneilc -d /tmp/restore

B.1. Backup stream

In the original burp, each peace of information sent over the wire starts with a single byte
that indicates the type of information. The next four bytes after that are a hexidecimal
number representing the length of the rest of the line. This means that I can have a maximum
of 65535 bytes in a line. I have found that this schema works well, and will continue to use it
for this project.
For the proof of concept program, I will use:
'f' to mean 'file name'.
's' to mean 'signature'.
'a' to mean 'data' (I reserve 'd' to mean 'directory' later on).

67

So, when backing up a small file called 'testfile', the backup stream might look something
like the following. For ease of reading, I have split it onto separate lines.

f0008testfile

s00300000006E18F503EA810FFB91AF5E8C4874BA3F8CE6DF96A9

a0014This is my testfile.

The signature is made up of the rabin fingerprint (16 characters) and the md5sum (32
characters) of the data in the file ('This is my testfile').
There may be many signature/data pairs per file backed up.

B.2. Restore stream

This is the same as the backup stream, except that there are no 's' (signature) lines required.

B.3. Storage format

There are three parts to the storage format.
The manifest (instructions on how to recreate a set of files), the signatures, and the actual
data.

In the prototype, there will be three top level diretories in the storage: 'man', 'dat' and 'sig'.
Each backup will have a single manifest. The first manifest will be '0', and subsequent ones
will increment that name by one each time. The 'dat' and 'sig' directories will each contain a
path and file named like this, where each component of the path and name is a hexidecimal
number:
'0000/0000/0000'
The signature file references the data file with the same path and name.
When enough data is written to this file (the number of chunks to be determined via some
experimentation), it is closed and a new one is opened with an incremented file name:
'0000/0000/0001'

When the file part gets to 'FFFF', a new subdirectory '0000/0001' will be created, and the file
within it will start from '0000' again.
Since popular file systems, like ext3, only support 32000 subdirectories, The subdirectory
increments will be limited to a maximum of 30000.

68

So, there can be 30000*30000*65535=58981500000000 data files, which should be enough!
Most file systems will run out of inodes before the number of storage data files run out.

The contents of the manifest file will look like the following, where the format of each line is
following the same outline as described for the backup stream:

f0009testfile2

s00130000/0000/0000/0000

s00130000/0000/0000/0001

s00130000/0000/0000/0000

s00130000/0000/0000/0001

s00130000/0000/0000/0002

f0009testfile3

s00130000/0000/0000/0000

The signature lines reference locations in the data and signature files, the first three
components being the file itself, and the last being the index of the signature/data.

The signature files will look like this:

s0030F45FE5EFF25857E918C552AEFA3CFD39A8ECB1F4E8D09196

s0030A423F6E2AF45C796EA35BD8C9ABC4D328133349EB80DC52A

s00301C9472B37A8DDC2106A9EBC217CF44AAC33A4AB50641A3A5

s0030933AEF79A6ED384202DA19419BC5F72908596D9D2E8B7C8F

s0030C1BEF23979ADDAADACDD8BEDF8BA67A91090777FEBD69266

And so on, for however many signatures there are in the signature/data file.

These signatures are loaded by the server before it reads the backup stream for the client, and
uses them for deduplication.

The data files will contain the chunks for each of the signatures, each preceeded by 'a<four
characters of hex>'.
Note that the server does not have to read the signatures in order to retrieve the data for a
restore, because the references in the manifest also point directly to the correct location in the
data files.
Also, this format allows for client compression and encryption of chunks on the client side at
some future date. This will not be done for this project, but I am ensuring that the decisions
that I make now do not preclude that.

69

Appendix C - Rabin fingerprinting algorithm in C

This is a reproduction of the C function containing the rabin algorithm that was produced for
the proof of concept programs. I judge this as being the most important outcome from that
exercise, although it was modified slightly during later iterations in order to support slightly
different usage required in the final software where asyncronous i/o had to be taken into
account. Note that the full code of the prototype can be found in the extra materials submitted
with this report.

static int blk_read(struct rconf *rconf, FILE *ofp, uint64_t multiplier,

 char *buf, char *buf_end, struct win *win,

 struct blk **blkbuf, int *b)

{

 char c;

 char *cp;

 struct blk *blk;

 for(cp=buf; cp!=buf_end; cp++)

 {

 blk=blkbuf[*b];

 c=*cp;

 blk->fingerprint = (blk->fingerprint * rconf->prime) + c;

 win->checksum = (win->checksum * rconf->prime) + c

 - (win->data[win->pos] * multiplier);

 win->data[win->pos] = c;

 win->pos++;

 win->total_bytes++;

 blk->data[blk->length++] = c;

 if(win->pos == rconf->win) win->pos=0;

 if(blk->length >= rconf->blk_min

 && (blk->length == rconf->blk_max

 || (win->checksum % rconf->blk_avg) == rconf->prime))

 {

 (*b)++;

 if(*b<SIG_MAX) continue;

 if(blks_output(rconf, ofp, blkbuf, b)) return -1;

 }

 }

 return 0;

}

70

Appendix D - Design of the first iteration

D.1. Storage format

Each client will have its own client storage directory on the server. This will contain a
separate directory for each backup made, plus a single directory containing all the signature
and data files.

The signature and data file format will be the same as in the proof of concept programs (see
Appendix B).

Each individual backup directory will contain a 'manifest' file, which are the equivalents of
the manifest files in the prototype. They contain the instructions on how to reconstruct files
from the data.
They will contain more information than in the prototype.
For example, they will contain lines representing various file system entry types, such as
directories, hard links, soft links, and so on.
Preceding each of these will be a line containing meta data for individual file system entry
being backed up (time stamps, permissions, etc). This allows for the very significant cost
saving measure of deciding whether to back up data in a file name that has been saved
before, based on modification time.

The following is an example of a section of a manifest file.
'r' lines are base64-encoded meta information for the following entry.
'd' is a directory
'f' is a regular file
'S' is a reference to a location in a signature/data file.
'l' is a soft link, which come in pairs. The first line is the location of the file system entry. The
second line is the target of the soft link.
Of course, there will be more file system entry types than this.

r003CA gB QAAF EH9 C Po Po A BAA BAA I BSB5nr BR8cCx BR8cCx A A J

d005D/home/graham/burp-cross-tools/mingw-w64-i686/libexec/gcc/i686-w64-

 mingw32/4.7.3/install-tools

r003Cn7 gB QBYV IHt B Po Po A x8 BAA I BSByPY BR8cCw BR8cCw A A J

f0067/home/graham/burp-cross-tools/mingw-w64-i686/libexec/gcc/i686-w64-

 mingw32/4.7.3/install-tools/mkheaders

S00130000/0000/000B/0C4F

r003Cn8 gB QBYg IHt B Po Po A 3S BAA I BSByPY BR8cCx BR8cCx A A J

71

f006B/home/graham/burp-cross-tools/mingw-w64-i686/libexec/gcc/i686-w64-

 mingw32/4.7.3/install-tools/mkinstalldirs

S00130000/0000/000B/0C50

r003AA gB QBYY KH/ B Po Po A W BAA A BSByNP BR8cCw BR8cCw A A J

l0060/home/graham/burp-cross-tools/mingw-w64-i686/libexec/gcc/i686-w64-

 mingw32/4.7.3/liblto_plugin.so

l0016liblto_plugin.so.0.0.0

It should be possible to process manifest files quickly, for various purposes, such as listing
all the files in a directory, merging two manifests together, or finding the differences between
two manifests. To facilitate this, the file system entries in the manifest will be ordered
alphabetically (with case sensitive 'strcmp()' at each path component). The following simple
list demonstrates that ordering:

/

/abc/def/ghi

/abc/def/ghi/aaa

/abc/def/ghi/mmm/nnn/ooo

/abc/def/ghi/zzz

/abc/def/zzz

/abc/dff/zzz

/zzz

This means that, when given a pair of paths, you will know if one is 'less than', 'equal to', or
'greater than' another path. The comparison, therefore of two manifests, will always be linear.
That is, it is only necessary to make forward progress through any manifest.
A consequence of this is that, during backup, the initial client scan of the meta data for the
file system entries to be backed up should also proceed in the same order.

D.2. Network data streams for backup

For this project, this will be changed. In order to maximise throughput, the client will send
the scan information, and as soon as the server starts receiving it, it will start requesting data
from the files that it needs. The client will then open those files, compute the signatures of
the blocks that make up the contents of those files, and send the signatures to the server.
As the server receives the signatures, it will attempt to find them in the existing data store. If
it fails, it requests the blocks it needs from the client, which will then send them. The server
will save the blocks and note in the manifest the locations of the blocks that are needed to
reproduce the file.
So, there will be five main components to the network communications in a backup. Three

72

from client to server, and two from server to client.
Client to server stream 1 - file scan data.
This will generally be 'r' (meta data), followed by '<entry type>' (file system entry type')
with its path. Repeat until scan finished.
r...d...r...f...r...f...
(this is a representation of how each component of the stream will look, showing only the
leading byte)

•

Server to client stream 1 - file requests.
This will be '<entry type>' with its path. Repeat until no more files need to be requested.
The server keeps track of the files that it requested. It knows that the next set of signatures
from the client will be for the next file in the list of requested files.
f...f...f...f...f...f...

•

Client to server stream 2 - signatures.
This will be 'R' (meta data), followed by one or more 'S' (signature) entries. The meta data
contains an index number unique to each signature/block in this backup.
Repeat until no more signatures need to be sent.
R...S...S...R...S...S...

•

Server to client stream 2 - data requests.
This will be 'D' (data request), which contains the index number for the block required.
Repeat until no more data needs to be requested.
D...D...D...D...

•

Client to server stream 3 - data.
This will be 'B' (block data), which contains the actual data requested. Repeat until no
more data needs to be sent.
B...B...B...B...

•

Each of these streams will be multiplexed over the same TCP connection, and demultiplexed
again on the other side. The TCP connection should never be left waiting with no traffic
passing over it, in order to maximise throughput (simultaneously in both directions) and
minimise time spent.
Streams later in the above sequence have priority over those earlier in the sequence.
So, for example, while the client has an outstanding signature or block to send, it will not be
sending scan information, (although it could still be gathering scan information from disk).

73

I have produced a high level diagram of the intended backup data flow around the client and
server, showing the major components and their inputs and outputs.

74

D.3. Scanning the client file system

In the original burp, the client would perform an initial scan of the files to be backed up,
sending the meta data to the server. Then based on the scan, once finished, and the contents
of the previous manifest, it would tell the client which files that it needed the contents of and
the client would then send the data.

Due to the multiplexing nature of the new system, the file scan component needs to be
reworked. Instead of doing the whole scan from beginning to end and then returning (after
having sent all the data across the network), there needs to be an interface that, when called,
returns the next file system entry in the scan. The calling routine can then decide what to do
with the data, or keep it for use later.

D.4. Pseudo code for main client backup process

while backup not finished {

 // multiplexer

 if nothing in write buffer {

 try to fill write buffer from requested block list

 if nothing in write buffer {

 try to fill write buffer from signature list

 if nothing in write buffer {

 try to fill write buffer from scan list

 }

 }

 }

 run async i/o (this will attempt to empty the write buffer into

 the async i/o buffer, as well as attempting to empty some of

 the async i/o buffer onto the network, and attempting to fill

 the read buffer with any incoming data)

 if something in read buffer {

 // demultiplexer

 a) if incoming file request, add to requested file list, or

 b) if incoming block request, mark block as requested

 }

 try to add to scan list by scanning the file system

 try to generate more signatures and blocks from requested files

 by opening the requested files and reading them

}

75

D.5. Pseudo code for main server backup process

while backup not finished

{

 // multiplexer

 if nothing in write buffer

 {

 try to fill write buffer from signatures from client

 if nothing in write buffer

 {

 try to fill write buffer from scan list from

 client

 }

 }

 run async i/o (this will attempt to empty the write buffer

 into the async i/o buffer, as well as attempting to empty some

 of the async i/o buffer onto the network, and attempting to

 fill the read buffer with any incoming data)

 if something in read buffer

 {

 // demultiplexer

 a) if incoming scan, add to scan list from client,

 deduplicating via modification time comparison if

 possible

 or

 b) if incoming signature, add to signature list from

 client, deduplicating via signatures from signature

 store if possible

 or

 c) if incoming block, add incoming block and signature

 to data store

 }

}

D.6. Network data streams for restore

Initially, the data streams for restore will be the same as in the original burp. That is, the
server will send a meta data line, then the type of file system entry to create, and then zero or
more lines containing the content to restore.
In time, the new software can do similar deduplication in the reverse direction. For example,

76

chunks of the data store could be replicated onto the client, and then instructions for how to
use it to reconstruct the original data could be sent, thereby meaning that each chunk would
need to cross the network once. For now though, I am aiming for reasonable restore times, so
this kind of reverse deduplication is beyond the scope of the project.

I have produced a high level diagram of the intended restore data flow around the client and
server, showing the major components and their inputs and outputs.

77

Appendix E - Design of the second iteration

The documents that were originally written for the second iteration were not quite right, and
needed to be modified due to some slight misconceptions from earlier designs.

After the first iteration, I realised that the storage format was not quite right. There is a server
'champion chooser' module now required for the second iteration, which selects lists of
signatures to duplicate on, given a collection of hooks from the client. To select the
signatures to load, it has a 'sparse index' of hooks in memory.
I had imagined that it could load the signatures from the signature store in the previous
design, which would map directly to the blocks in the block store.
However, this was not right, because after multiple backups, the signatures in the signature
store start to lose the property of locality as deduplication takes effect, since only new blocks
get added to the data store.

Instead, the champion chooser needs to use sparse indexes on the manifest of each backup.
That is, the actual sequence of blocks as they appeared in each backup, rather than the
compacted data in the block store.

This also means that there is no longer any need for the 'signature store' in the previous
design, since nothing looks at it any more.

So, there follows a slightly modified version of the original design for the second iteration.

78

First, an updated high level diagram of the intended backup data flow around the client and
server, showing the major components and their inputs and outputs.

79

E.1. Network data streams

The data streams remained the same as in the first iteration for both backup and restore.

E.2. Scanning the client file system

This also remained the same. In fact, there were no design changes at all for the client.

E.3. Storage format

In order to allow deduplication across multiple different clients, the directory structure for
backup storage now looks like this:

<group>/data/

<group>/data/sparse

<group>/data/0000/0000/0000

<group>/data/0000/0000/0001 (and so on)

<group>/clients/<name>/<backup number>/manifest/

<group>/clients/<name>/<backup number>/manifest/sparse

<group>/clients/<name>/<backup number>/manifest/00000000

<group>/clients/<name>/<backup number>/manifest/00000001 (and so on)

Clients can be configured to have different deduplication groups, and can thereby share
saved blocks. When opening files in the 'data' directory for writing, the server now needs to
get a lock before doing so, since more than one child process could be trying to open the
same file.

Due to the need for the 'champion chooser' module to index the manifests from each backup,
the manifest files are now broken down into multiple files, containing a maximum of 4096
signatures each. They still have the same internal format as described in the first iteration.

At the end of each backup, a sorted sparse index for each of the manifest components is
generated, and the 'sparse' file in the manifest directory is updated to contain all of them. This
file is then merged into the 'sparse' file in the 'data' directory for the group. If there are entries
with identical hooks, the more recent manifest component is chosen.
The following is an example of the format of the 'sparse' files. The paths are always relative
to whatever the root directory is. This ensures that backup group directories can be copied to
other locations at anytime without causing path problems.

80

M0042global/clients/black/0000005 2013-10-22 16:44:54/manifest/0000022F

F0010F00008A155DF4307

F0010F00258BF988BFC28

...

M0042global/clients/white/0000003 2013-10-10 00:04:22/manifest/00000198

F0010F000182980D81EEC

F0010F000227AB578BE4C

...

The 1 character plus 4 character syntax at the beginning of line follows the strategy described
previously.'M' means 'path to manifest component', and 'F' means 'fingerprint'. Duplicate
fingerprints ('hooks') within an index are removed. The rabin fingerprints chosen for the
hooks are those that start with 'F'. This generally gives between 200 and 300 hooks for each
manifest component. Since there are 4096 signatures in each manifest component, this
reduces the memory requirement for the index to about 1/16.
At some future point, this can be halved if the software is modified to pack the fingerprints
into 4 bits per character. Additionally, fewer hooks could be chosen per manifest component
for more memory reduction. However, just choosing those that begin with 'F' is enough for
the current project.

E.4. Champion chooser

The champion chooser module takes the sparse index (generated from previous manifests) as
an input, plus a sequence of incoming hooks from the client. The server program waits until
enough signatures (currently 4096, or no more left to receive) have been received before
running the main champion chooser code.

The champion chooser needs to choose the manifest component that contains the largest
number of hooks in the sequence from the client. When it has done so, it needs to repeat the
procedure to choose another, but exclude hooks from already chosen manifest components.
Then repeat again, X number of times, or until all the hooks have been chosen. Crucially, all
this needs to be fast.

In memory, the fingerprint hooks are converted to uint64 types and are used as the indexes
for 'sparse' structs making up entries in a hash table. Each struct contains an array of pointers
to candidate manifest component entries. When a hook is added from a candidate, a new
'sparse' struct is added if one didn't already exist for the hook, and a pointer to the relevant
candidate is added to array.

81

The candidate manifest components are structures containing the path to the component, and
a uint16 pointer for its score - the content of the pointer is contained in a separate array,
which means that the scores array can be very quickly reset without needing to iterate over
all the candidates.

Each incoming hook structure from the client has a pointer to a uint8 type called 'found',
which indicates whether a candidate has been chosen that contains this hook. Again, this
points to an entry in a separate array, so that resetting these values is just a matter of setting
the contents of the array to zero, rather than having to iterate over all the incoming
components.

When it is time to choose the set of champions, the incoming 'found' array is reset.
Then, while not enough champions manifest components have been found, the scores are
reset, and the incoming hooks are iterated over. If an incoming hook's 'found' field is set, it is
skipped. Note that none of the 'found' fields have yet been set for hooks from the
immediately previous iteration.
If a hook is found in the hash table, the scores of all the candidates that contain that hook are
incremented in turn. A pointer to the highest scoring candidate is maintained as the scores are
incremented.
If a candidate pointer is arrived at that is the same as the immediate previously found
manifest, the incoming hook's 'found' field is set, and any incremented scores that were set on
its candidates are reset. This excludes previously accounted for hooks from the score, and
since the 'found' field is now set, subsequent passes discount them faster.

After iterating over the incoming hooks, the highest scoring candidate manifest component is
chosen to be loaded into memory via its path component. As this contains all the signatures
from that candidate and not just the hooks, the server now has a reasonable set of signatures
with which to deduplicate incoming blocks.
If not enough champions have been found, the incoming hooks are iterated over again.

As this requires only one file to be open and read for each candidate chosen, the problem of
the disk deduplication bottleneck has been significantly reduced.

Finally, an important feature to note is that the server needs to continually add manifest
components from the current backup in progress as candidates. Otherwise, the first backup
would potentially store far more data than necessary, as it has nothing to deduplicate against.
Subsequent backups would be able to deduplicate against previous ones, but not themselves.

82

Appendix F - Open source competition

Before any design, coding, or testing was done, I researched the open source network backup
solutions available. The following are the results of that initial research.

burp-1.3.36 (Keeling, 2011):
Has a simple client/server architecture.
Uses librsync in order to save network traffic and to save on the amount of space that is used
by each backup. It also uses VSS (Volume Shadow Copy Service) to make snapshots when
backing up Windows computers. Operates at a file-level granularity.
Version 1.3.36 was the latest version at the time of writing.

Advantages:
Backup clients can be centrally managed on a Unix-based server.•
Good cross platform support for clients. Supports Unix-based systems, including Macs.
Supports the native Windows Backup API with VSS snapshots. This ensures a consistent
file system image and also ensures that all files are available to be read. Backup solutions
that do not use the API will not be able to open files that other applications already have
open.

•

Backs up file differences via delta differencing with librsync.•
Supports files, directories, symlinks, hardlinks, fifos, nodes, permissions and timestamps.•
Supports Linux and FreeBSD acls and xattrs.•
Supports Windows permissions, file attributes, and so on, via VSS.•
Supports Windows EFS files.•
Storage and network compression using zlib.•
Ability to continue interrupted backups.•
Network communications encrypted with SSL.•
Automatic SSL certificate authority and client certificate signing.•
Client side file encryption - (note: this turns off delta differencing).•
Scheduling.•
Email backup success/failure notifications.•
Pre/post backup/restore client scripts.•
Storage data deduplication.•
Automatic client upgrade.•
Due to the design of the server, most configuration changes do not need a server restart in
order to become effective.

•

Simple retention periods (e.g, keep 1 backup per day for 7 days, 1 backup per week for 4•

83

weeks, 1 backup per 4 weeks for a year).
MD5 Verification of saved data.•

Disadvantages:
Since each file is stored as a separate file system entry on the server, Backups containing
many files can end up using a lot of file system inodes. This has consequences on the
amount of time it takes to complete subsequent backups, because many system calls are
required, for example, to hard link unchanged files into place in the latest backup. Or to
delete old backups, because each inode has to be unlinked.

•

As previously described, there are limitations of the librsync mechanism related to large
files that change.

•

Identical files across multiple clients will be stored multiple times. This can be dealt with
by post-event file deduplication, but this is not optimal and with large numbers of files,
takes a significant amount of time.

•

Identical blocks will be stored multiple times across all files and all clients.•
If configured to use reverse librsync deltas to save storage space, restore times for large
files can become long, because each delta has to be applied and the large file regenerated
for each change in the sequence.

•

amanda (da Silva et al, 1991):
Server contacts each client to perform a backup at a scheduled time. Has a native Windows
client. On Unix-like systems, it uses native tools to make the backup, like tar.

Advantages over burp-1.3.36:
Has a long history, and therefore should be expected to be stable.•
No hard link farm.•

Disadvantages over burp-1.3.36:
Like bacula, it is clearly focused on tape storage and pretends that a file on the disk is
actually a tape, which leads to inefficiencies that don't need to exist when your medium
has random access.

•

Hard to configure.•

backshift (Stromberg, 2010):
Uses variable-length blocks to perform inline deduplication. Stores the chunks on disk in a
directory structure named after the checksums it creates. It appears to use the file system as
its full chunk index.

84

Appears to be designed with local backups in mind, rather than networked.

Advantages over burp-1.3.36:
Inline deduplication.•

Disadvantages over burp-1.3.36:
No Windows API support. Open files cannot be backed up.•
No central management, or scheduling.•
Poor network support. Cannot run over the network with ssh. Instead, it needs to mount a
network share (smbfs, sshfs, etc) and read the data from that. Suspect that all the data is
transferred every time.
On investigation,
http://stromberg.dnsalias.org/~strombrg/backshift/documentation/for-all/backing-up.html,
says "writing to a remote filesystem is faster than reading from one - if you have the
choice", so pushing probably means that not all the data is transferred every time. I will
push when I test it.

•

Running on Windows requires installation of cygwin and python, or for the Windows
filesystem to be mounted on the server via a network filesystem, which means that the
backup has to be pulled.

•

Will suffer from disk deduplication bottleneck issues due to the full index created on the
disk.

•

backuppc (Barratt, 2001):
Uses no client side software, instead backs up clients using network shares and tar or rsync
on the server.
Has a 'pool based' deduplication mechanism to deduplicate across multiple clients. This
apparently operates at a file level granularity, not block level, and is therefore not suitable for
backups of disk images. The 'pool' appears to operate as a hard link farm.

Advantages over burp-1.3.36:
Claims to be 'enterprise grade'.•

Disadvantages over burp-1.3.36:
No Windows API support. Open files cannot be backed up.•

85

bacula (Sibbald, 2010):
The original burp was based on bacula-5.0.3, so it contains many of the best features of
bacula, whilst solving many of its problems.
Instead of being of a client/server architecture, bacula has four main components - the
director, the file daemon, the storage daemon, and the catalog.

Advantages over burp-1.3.36:
Since bacula tries to emulate a tape drive when it saves to disk, it stores the data in a
tar-like format containing the data for many files. This means that there are no issues with
management of large hard link or mirror farms. However, it does have other issues related
to the way it tries to view these storage files as tapes.

•

Claims to be 'enterprise grade'.•

Disadvantages over burp-1.3.36:
Complexity to configure - each of the main components has their own set of configuration
files, for example.

•

Although it avoids problems with hard link farms, it still works badly with disk storage -
Bacula's mentality is very highly geared towards tape usage and therefore it works poorly
with disks.

•

Stores the catalog separately to the backups - This causes a massive maintenance
headache. For example, you now have to think about backups of your catalog.
Additionally, changes to your configuration files might not take effect because some of the
previous configuration gets written to the catalog, and then it is not easy to make the
changes take effect. Furthermore, you end up needing to be a mysql or postgres database
expert.

•

Backs up the whole file even if only a few bytes in it have changed.•
Relies far too heavily on clock accuracy - Bacula goes very badly wrong if your
computer's clock somehow gets skewed. In fact, it relies so heavily on the clock and
timestamps that it does not actually track which backup another was based on.

•

Laptop backups are difficult to schedule.•
Cannot resume an interrupted backup.•
Retention configuration - my experience taught me that it is just impossible to configure a
sensible retention policy for bacula. The reasons why are too long to go into here, but my
post to the bacula email user list on the subject can be found at:
http://adsm.org//lists/html/Bacula-users/2011-01/msg00308.html

•

No Windows EFS support - EFS files are silently ignored.•
Has a commercial edition, into which most new features go.•

86

bup (Pennarun, 2010):
Uses the versioning control system 'git' as its backend. Reads data directly on standard input,
splits it into chunks using a rolling checksum, and packs it directly into git packfiles. Before
writing a chunk, it first deduplicates using previously written packfiles. Can be run securely
over the network with ssh.

Advantages over burp-1.3.36:
Inline deduplication.•
Efficient at backing up large files, such as huge disk images.•
No need to apply deltas when restoring old versions of files, as each chunk is retrieved
directly from storage when needed.

•

Disadvantages over burp-1.3.36:
Immature meta data support.•
No Windows API support. Open files cannot be backed up.•
Running on Windows requires installation of cygwin.•
Cannot prune away old backups.•
No central management, or scheduling.•
Performing a backup stores some data on the client.•

obnam (Wirzenius, 2007):
Uses ssh to transfer data. Seems to be able to do inline deduplication.

Advantages over burp-1.3.36:
Inline deduplication.•

Disadvantages over burp-1.3.36:
No Windows API support. Open files cannot be backed up.•
Running on Windows requires installation of cygwin.•
No central management.•

rdiff-backup (Escoto et al, 2001):
Backs up one directory to another, possibly over a network.
Like burp, it uses librsync. It creates a mirror, and reverse diffs are created so that previous
versions of files can be restored.

87

Disadvantages over burp-1.3.36:
No Windows API support. Open files cannot be backed up.•
Running on Windows requires installation of cygwin.•
No central management, or scheduling.•

rsync (Tridgell et al, 1996) --link-dest wrappers:
The rsync --link-dest functionality is used as the back end of various backup scripts, such as
rsnapshot.
A set of files is backed up as a mirror. In subsequent backups, files that have not changed are
hard linked to the entries in the previous backup in order to save disk space. Or, in other
words, you have a hard link farm.

Disadvantages over burp-1.3.36:
No Windows API support. Open files cannot be backed up.•
Running on Windows requires installation of cygwin.•
No central management, or scheduling.•

tar over ssh (GNU, 1999):
The name 'tar' is derived from 'tape archive'. is a utility that combines files and meta data into
a single stream. Running it over ssh ('ssecure shell') means that the stream can be sent across
the network securely. I am including this as a backup option because it gives me some sort of
scientific control. Each backup that this method makes will be self contained, not relying on
any other backup, so the network utilisation and storage will be consistent for each run.

Advantages over burp-1.3.6:
These tools are ubiquitous over Unix-like operating systems.•

Disadvantages over burp-1.3.6:
No Windows API support. Open files cannot be backed up.•
Windows does not come with open source programs like tar, or ssh. A linux-like
environment needs to be installed with cygwin in which to run them.

•

No central management, or scheduling.•
All the data is transferred each time.•
Massive redundancy of stored data. Will take up a lot of disk space. Note: After
performing the tests, I discovered that tar has the ability to do incremental backups, and
amanda uses this capability. Therefore, amanda's backup results can be seen as
analagous to the results of tar's incremental backups had I run tests on tar in that mode.

•

88

urbackup (Raiber, 2011):
Client/server backup system. File and image backups are made while the system is running
without interrupting current processes. Also continuously watches directories that you want
backed up, in order to quickly find differences to previous backups. Has a native Windows
client.

Advantages over burp-1.3.36:
Image backups of Windows (but not Unix-style systems)•
Has an interesting method of broadcasting on the LAN in order to find clients to back up.•

Disadvantages over burp-1.3.36:
Windows or posix ACLs, alternate data streams or permissions are not backed up during a
file backup.

•

Poor linux support - the online manual states "the client software currently runs only on
Windows while the server software runs on both Linux and Windows". However, at the
time of writing, I did find source for a Linux client.

•

Has an underdeveloped command line interface. It is impossible to restore from the
command line, or to trigger a backup. Files can only be restored one at a time from its web
interface. Consequently, I am not able to test this software properly.

•

89

Appendix G - Raw test data

Tests a1-a6 are backups of small files.
Tests b1-b6 are restores of small files.
Tests c1-c6 are backups of small files.
Tests d1-d6 are restores of small files.

amanda-3.3.1

This software uses either tar (in incremental mode) over ssh, or 'dump' to

retrieve files from the client. For the tests, I configured it to use tar.

I did not capture memory statistics for the use of tar and ssh, and due to

the complexity of the restore procedure, could not get server memory statistics

for the restore.

Each backup was performed as an incremental (amanda automatically promoted the

first of each sequence to a full).

 max mem (kb)

test time client server network (b) disk space (kb) nodes

a1 32:56 - 23248 19183345724 17510752 30

a2 04:31 - 23344 107900600 17606856 36

a3 05:41 - 23328 656049880 18203648 42

a4 06:15 - 23360 655611900 18800440 48

a5 14:45 - 23252 6360937308 24597208 54

a6 02:22 - 23468 36993628 24630116 60

b1 30:19 15348 - 18903206284 - -

b2 31:51 15464 - 19009897796 - -

b3 33:08 15524 - 19544418832 - -

b4 33:12 15532 - 19545361840 - -

b5 41:58 15548 - 25166198412 - -

b6 45:47 15544 - 25179850864 - -

c1 32:36 - 23260 24220077632 22190460 30

c2 00:03 - 22184 39692 22190564 36

c3 32:31 - 23252 24227710432 44380932 42

c4 32:28 - 23272 24224534548 66571300 48

c5 32:30 - 23244 24229732244 88761668 54

c6 15:44 - 23260 11725042740 99503956 60

d1 33:30 4608 - 23807491248 - -

d2 33:37 4620 - 23804837640 - -

d3 32:56 4580 - 23806787244 - -

d4 33:00 4584 - 23818501728 - -

d5 1:05:58 4512 - 47611538272 - -

d6 49:04 4512 - 35333166188 - -

90

backshift-1.20

The server storage directory was mounted on the client using sshfs and

backshift was run on the client side, saving to the mounted directory.

Several hours into the second backup, where no files had been

touched in the backup set, testing backshift was abandoned.

 max mem (kb)

test time client server network (b) disk space (kb) nodes

a1 43:37:50 125132 - 6709214436 6314132 1290187

backuppc-3.2.1

This software uses tar over ssh to retrieve files from clients.

I did not capture memory statistics for the use of tar and ssh.

 max mem (kb)

test time client server network (b) disk space (kb) nodes

a1 1:23:49 - 284984 17901726148 9100204 2106563

a2 19:08 - 284972 28261484 9511692 2226526

a3 25:23 - 284968 542277068 10456412 2423805

a4 25:43 - 284968 542110772 10835368 2579155

a5 30:25 - 285008 5872127792 11253144 3188940

a6 19:52 - 110464 5854417192 11431256 3728321

b1 51:47 - 1172 18580045616 - -

b2 1:00:56 - 1168 18616293176 - -

b3 1:02:02 - 1168 18608841452 - -

b4 1:06:50 - 1172 18627536544 - -

b5 1:06:38 - 1168 18611113920 - -

b6 22:21 - 1160 6088763864 - -

c1 32:28 - 19644 24239202344 22190452 58

c2 00:04 - 19648 8680 22190484 71

c3 23:49 - 23704 53683896 44380820 96

c4 22:46 - 23704 53678308 44380864 114

c5 32:21 - 19620 24240577464 44380928 137

c6 15:47 - 19656 11734617416 55123184 161

d1 32:55 - 1144 23500251316 - -

d2 32:54 - 1140 23499752736 - -

d3 32:56 - 1144 23505114172 - -

d4 32:56 - 1140 23504421352 - -

d5 33:05 - 1148 23497633972 - -

d6 16:03 - 1152 11377405112 - -

91

bacula-5.2.13

This software has multiple components - the database, the director,

the storage daemon and the file daemon. MySQL was used as the database

software, and ran on the server along with the director and storage

daemon. The file daemon runs on the client side. Memory statistics were

recorded for all of these. MySQL disk space and nodes were also included in

the results.

Each backup was performed as an incremental (bacula automatically promoted the

first of each sequence to a full).

 max mem (kb)

test time client server network (b) disk space (kb) nodes

a1 1:14:13 1188 183516 19415316808 16613252 28

a2 06:24 315816 212648 7339 16613252 28

a3 08:22 315712 212592 558876468 17090484 28

a4 08:21 315820 212852 558831313 17567712 28

a5 33:18 315932 212464 6558268748 23074912 28

a6 12:51 318896 212900 403522651 23214996 28

b1 37:49 4364 394420 18761519812 - -

b2 37:53 4364 394404 18761497347 - -

b3 37:41 4364 394348 18761753952 - -

b4 37:50 4360 394444 18760842419 - -

b5 38:41 4368 394380 18762252423 - -

b6 14:06 4372 279184 6143147781 - -

c1 36:36 4820 58416 24148768088 22207036 28

c2 00:01 13648 58980 7337 22207036 28

c3 35:27 14168 58416 24150990612 44413760 28

c4 36:00 14376 58792 24154976470 66620488 29

c5 36:06 14380 58496 24151605070 88827212 29

c6 17:27 48420 58224 11689696758 99577364 29

d1 32:28 4372 22583 24035061412 - -

d2 32:28 4360 58076 24033754963 - -

d3 32:27 4376 58328 24034781702 - -

d4 32:45 4360 58516 24094745919 - -

d5 32:29 4360 57904 24034420735 - -

d6 15:44 4356 57952 11634940513 - -

92

bup-0.25

For the tests, bup used ssh for the network transport. Memory usage

for ssh was not recorded. The bup 'split' command was used for backing up,

and 'join' for restore.

 max mem (kb)

test time client server network (b) disk space (kb) nodes

a1 1:05:25 50396 41564 13028027920 12024828 92

a2 47:36 36924 36976 22788 12054464 97

a3 47:41 43160 23764 552641840 12541864 98

a4 47:28 42076 15656 301338788 12818772 101

a5 51:40 50160 40564 3441960928 15993348 113

a6 16:46 43636 8828 123336 15993444 116

b1 27:49 8084 3687524 18721975020 - -

b2 28:12 8080 3689344 18727867332 - -

b3 27:31 8072 3688592 18720814964 - -

b4 27:15 8072 3689556 18725122480 - -

b5 27:49 8076 3446688 18731302336 - -

b6 09:57 8120 1689772 6136944368 - -

c1 37:06 54728 49860 14760055588 13673276 97

c2 19:30 43400 8214 32492 13647632 98

c3 19:38 45132 11000 44790792 13688684 101

c4 19:34 43888 8132 64096 13688720 104

c5 19:35 43892 34472 63836 13715140 109

c6 09:26 43872 8124 80428 13689000 110

d1 33:40 8116 3694364 23825024780 - -

d2 33:53 8116 3687716 23821504284 - -

d3 33:28 8084 3695360 23811360164 - -

d4 32:58 8084 3696864 23815830112 - -

d5 32:56 8084 3697192 23823484740 - -

d6 16:00 8120 3696736 11533677068 - -

obnam-1.1

The server storage directory was mounted on the client using sshfs and

obnam was run on the client side, saving to the mounted directory.

Testing on obnam was abandoned after it hadn't finished after

8 hours and had taken up more than 50GB of space on the server,

when there were only 22GB of files to bakup up on the client.

93

rdiff-backup

For the tests, rdiff-backup used ssh for the network transport. Memory usage

for ssh was not recorded. I was unable to record server memory statistics

for the server when restoring large files.

 max mem (kb)

test time client server network (b) disk space (kb) nodes

a1 2:08:09 155932 632632 19549959636 20492104 1624474

a2 25:17 154156 29548 732119660 20579220 1624480

a3 1:05:54 172512 73508 1330676312 21232008 1669655

a4 1:04:33 172576 73516 826853828 21492456 1714830

a5 10:56:29 156352 699136 13588674368 28216628 2763315

a6 12:28:14 65212 29532 1856630968 28095444 2763324

b1 2:20:46 287712 630348 18493237092 - -

b2 2:19:55 287832 630416 18493619200 - -

b3 2:19:32 287840 630028 18494316560 - -

b4 2:18:52 287960 630416 18494140436 - -

b5 2:18:07 289328 623580 18494732116 - -

b6 44:49 105024 255252 6056832020 - -

c1 1:40:30 10908 11256 24084094872 22190296 13

c2 00:05 10260 10396 68516 22190304 19

c3 42:21 17984 17292 104168884 22272648 27

c4 52:52 18364 18600 1999400 22272684 35

c5 2:09:00 11404 11092 24086698904 44462964 44

c6 35:39 17996 17996 2029536 41372716 52

d1 1:21:19 11416 - 23953765636 - -

d2 1:27:13 11412 - 23955454164 - -

d3 1:03:15 11416 - 23953752660 - -

d4 42:23 11416 - 23954690536 - -

d5 1:02:19 11412 - 23957680960 - -

d6 20:29 11412 - 11596528360 - -

94

rsync-link-dest

For the tests, rsync used ssh for the network transport. Memory usage for ssh

was not recorded.

 max mem (kb)

test time client server network (b) disk space (kb) nodes

a1 34:57 42224 49964 17921288120 20001104 1535719

a2 05:38 28316 28412 43588912 20360088 3071436

a3 08:11 28292 37028 560651704 21285484 4607153

a4 07:12 28580 37224 54572948 22210876 6142870

a5 14:36 34208 47856 5899248188 29008644 7678588

a6 01:51 16708 17624 14553352 29131180 8187702

b1 28:37 97540 138424 17396435028 - -

b2 28:29 97544 138532 17407095180 - -

b3 28:05 97540 136904 17394005376 - -

b4 27:54 97544 135868 17392775068 - -

b5 27:42 97544 138756 17391105544 - -

b6 08:46 69624 61852 5686955940 - -

c1 32:33 6588 1488 24254325112 22190276 4

c2 00:02 3188 1248 7316 22190280 6

c3 28:58 6312 9140 96024684 44380552 8

c4 29:41 3320 9144 2229896 66570824 10

c5 32:26 6852 1488 24242023980 88761096 12

c6 15:33 3216 9068 1887460 99503292 14

d1 32:31 7380 1256 23513700756 - -

d2 32:33 7376 1252 23515115572 - -

d3 32:40 7280 1244 23511657216 - -

d4 32:46 7316 1252 23529028584 - -

d5 32:54 7476 1248 23520135780 - -

d6 15:54 7256 1048 11383879512 - -

95

tar-over-ssh

Memory usage settings for ssh were not recorded. For the server, that meant

no memory usage results, since that was the only process running on the server.

 max mem (kb)

test time client server network (b) disk space (kb) nodes

a1 34:14 1416 - 18906459540 17457040 2

a2 32:46 1420 - 18901056092 34914076 3

a3 32:55 1416 - 18902683324 52371112 4

a4 32:53 1416 - 18901313052 69828148 5

a5 32:49 1436 - 18903018656 87286192 6

a6 11:27 1396 - 6192213332 93003248 7

b1 25:47 1120 - 18716011072 - -

b2 25:49 1116 - 18710756096 - -

b3 25:50 1124 - 18710245600 - -

b4 25:52 1124 - 18714191624 - -

b5 25:53 1128 - 18713813356 - -

b6 08:26 1118 - 6127883736 - -

c1 33:05 1204 - 23944470936 22190280 2

c2 32:40 1208 - 23944195580 44380556 3

c3 33:04 1208 - 23943847812 66570832 4

c4 32:47 1216 - 23943428308 88761108 5

c5 32:45 1216 - 23944522232 110951384 6

c6 15:54 1216 - 11591519516 121693580 7

d1 33:03 1152 - 23814698300 - -

d2 32:44 1148 - 23813943948 - -

d3 32:48 1152 - 23806047744 - -

d4 32:47 1148 - 23805303488 - -

d5 32:46 1156 - 23806356912 - -

d6 15:55 1160 - 11526917756 - -

urbackup-1.2.4

Note: Testing on urbackup was abandoned when it was discovered that

the only way to restore files was one at a time via its web interface.

This made restoring millions of files impractical.

96

burp-1.3.36

A one line patch was applied to burp-1.3.36 in order to turn off network

compression. Another patch was applied to prevent it compressing individual

files on restore.

 max mem (kb)

test time client server network (b) disk space (kb) nodes

a1 56:06 5136 3712 19073221246 20381968 1535686

a2 27:13 5124 3752 559650895 20762924 1535691

a3 35:12 5140 3844 1232999529 21720168 1580870

a4 38:03 5144 3828 764511451 22281984 1626049

a5 39:35 5128 3712 6630073883 29226320 2135147

a6 13:21 5124 3752 193122037 29355744 2135158

b1 39:58 3452 49216 18408345630 - -

b2 39:51 3448 49980 18408178034 - -

b3 43:34 3452 41896 18408416587 - -

b4 38:01 3452 35288 18403160479 - -

b5 37:05 3456 34568 18405181477 - -

b6 11:26 3448 13908 6025288820 - -

c1 32:56 3916 3560 24209453432 22190320 15

c2 0:04 3912 3652 10605 22190340 20

c3 49:24 10124 8536 125113914 22272284 32

c4 46:25 10124 8644 22968510 22272352 44

c5 32:56 3912 3560 24209415813 44462664 56

c6 39:41 10124 6788 22835167 41393692 68

d1 1:18:28 3456 3424 24168034544 - -

d2 1:12:39 3452 3424 24167416085 - -

d3 53:58 3456 3428 24167803329 - -

d4 33:13 3452 3424 24167751901 - -

d5 55:25 3448 3428 24167297229 - -

d6 16:08 3452 3428 11699804162 - -

97

burp-2.0.0

A one line patch was applied to burp-1.3.36 in order to turn off network

compression.

 max mem (kb)

test time client server network (b) disk space (kb) nodes

a1 50:12 936276 422436 6261782638 5321000 459

a2 6:01 560492 167004 463561084 5647588 466

a3 8:22 560604 191472 993873340 6447976 521

a4 7:38 560488 191036 479991676 6774508 528

a5 18:47 561020 267716 646705357 7102040 535

a6 2:17 188924 183604 154855021 7211576 542

b1 2:32:14 3392 1419164 18072607863 - -

b2 2:24:02 3396 1460392 18072342507 - -

b3 2:13:37 3392 1514896 18071492855 - -

b4 2:12:54 3396 1502624 18071360723 - -

b5 2:16:30 3396 1499876 18072840238 - -

b6 1:09:27 3396 925132 5919571611 - -

c1 44:27 166552 352840 14740348487 13442384 963

c2 00:22 3752 369148 10712 13529832 970

c3 32:45 96172 370104 333668235 13652820 981

c4 32:38 44292 370268 294625537 13740276 988

c5 32:42 44292 370012 294212673 13827728 995

c6 15:50 44284 370036 143341975 13870216 1004

d1 1:50:26 3392 929832 24079869152 - -

d2 1:49:51 3408 922188 24080071062 - -

d3 1:56:46 3408 901052 24081243535 - -

d4 2:00:49 3408 870040 24081042956 - -

d5 2:12:54 3412 842132 24081705105 - -

d6 41:56 3408 717240 11656952804 - -

98

burp-2.0.1

A one line patch was applied to burp-1.3.36 in order to turn off network

compression.

 max mem (kb)

test time client server network (b) disk space (kb) nodes

a1 49:55 964824 222620 6333908776 5134556 1047

a2 5:26 546768 15616 459379807 5275764 1862

a3 7:30 546796 23460 982353947 5886076 2701

a4 7:01 546792 23440 470919618 6027296 3516

a5 17:36 547928 88208 631650761 6169096 4332

a6 1:57 184516 14256 151701404 6215876 4604

b1 2:03:56 3480 333452 18070868859 - -

b2 2:02:49 3464 333448 18070889282 - -

b3 2:00:17 3464 333452 18069833763 - -

b4 2:00:25 3460 333248 18070389579 - -

b5 1:59:24 3464 332836 18070507134 - -

b6 1:04:34 3460 333032 5919135548 - -

c1 46:07 166628 27076 15968721238 14442396 1317

c2 0:59 3836 23276 10660 14544832 2113

c3 33:22 166520 28208 380791042 14704548 2912

c4 33:30 137996 25148 351607673 14817148 3709

c5 33:30 137996 25264 349251193 14929748 4506

c6 16:18 122168 23076 169103345 14982380 4898

d1 1:08:10 3476 369672 24077829873 - -

d2 1:08:05 3464 369660 24076534634 - -

d3 1:10:13 3480 368820 24077401653 - -

d4 1:14:52 3476 368608 24078404161 - -

d5 1:13:54 3480 368612 24077496825 - -

d6 26:55 3460 362164 11655881312 - -

99

Appendix H - Items to be completed before releasing the new software

This is a raw list from my notes of the the things that need to be done before an initial release
of the newly developed software. I expect these items to take roughly two months to
complete. As this is a raw list, much of it relates to obscure parts of the software, and is
provided for interest only.

* Merge in burp1 code and make it possible to switch between burp1 and

 burp2 modes. This will help transition, and enables support to continue

 for situations where burp1 is suitable where burp2 may not be.

* Reduce the number of blocks that the client holds in memory at a

 time. Make sure this doesn't affect speed. Start by halving the

 number.

* Get a lock before writing to a data file.

* Get a lock before regenerating a sparse index.

* Review how the sparse indexes are generated. Probably too many of them

 are made at the moment.

* Sorting the hooks at the end of a backup probably uses too much memory.

* Separate phase1/phase2 again.

* Fix counters (needs phase1/2)

* Make recovery from partially complete backups work (needs phase1/2).

 Hooks need to be generated from already transferred manifests. Need

 to forward through already written 'changed/unchanged' manifest.

* Make include/exclude/include work again (needs phase1/2 to make it

 easy). By this, I mean including something inside a directory that is

 excluded.

* Don't store fingerprints and md5sums as strings.

* Make verify work.

* Make CMD_INTERRUPT work (on restore, maybe others too).

* Make it possible to delete unused data files.

100

* Make the status monitor work.

* Make the status monitor use sdirs.

* Add data compression.

* Add data encryption.

* Make acl/xattrs work as far as burp1 does.

* Make Windows EFS work.

* Make Windows 'image' backups work.

* Make asyncio use iobuf for everything instead of just being a wrapper

 around the old stuff.

* Make src/client/list.c use sbuf.

* champ_chooser: figure out a way of giving preference to newer

 candidates.

* Fix conf/cntr init problem.

* Check notifications work (warnings are turned off because of conf/cntr

 init problem.

101

	src.html

